We have created a Zotero group that will compile papers and datasets relevant to PICCAASO. Please join the group and add any papers you think are relevant.
Recently added publications
5228893
1
apa
20
date
desc
42
https://www.piccaaso.org/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22XE8KJB4I%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Burke%20et%20al.%22%2C%22parsedDate%22%3A%222024-10-31%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBurke%2C%20G.%2C%20Wongpan%2C%20P.%2C%20Lannuzel%2C%20D.%2C%20%26amp%3B%20Hayashida%2C%20H.%20%282024%29.%20Data%20collation%20for%20climate-cooling%20gas%20dimethylsulfide%20in%20Antarctic%20snow%2C%20sea%20ice%20and%20underlying%20seawater.%20%3Ci%3EScientific%20Data%3C%5C%2Fi%3E%2C%20%3Ci%3E11%3C%5C%2Fi%3E%281%29%2C%201185.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41597-024-04038-w%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41597-024-04038-w%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Data%20collation%20for%20climate-cooling%20gas%20dimethylsulfide%20in%20Antarctic%20snow%2C%20sea%20ice%20and%20underlying%20seawater%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gabrielle%22%2C%22lastName%22%3A%22Burke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pat%22%2C%22lastName%22%3A%22Wongpan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Delphine%22%2C%22lastName%22%3A%22Lannuzel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hakase%22%2C%22lastName%22%3A%22Hayashida%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-10-31%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41597-024-04038-w%22%2C%22ISSN%22%3A%222052-4463%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41597-024-04038-w%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-11-05T22%3A18%3A39Z%22%7D%7D%2C%7B%22key%22%3A%22LNYMVI38%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chen%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-25%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChen%2C%20L.%2C%20Zhang%2C%20L.%2C%20She%2C%20Y.%2C%20Zeng%2C%20Z.%2C%20Zheng%2C%20Y.%2C%20Tian%2C%20B.%2C%20Zhang%2C%20W.%2C%20Liu%2C%20Z.%2C%20%26amp%3B%20Ding%2C%20M.%20%282024%29.%20Measurement%20report%3A%20Analysis%20of%20aerosol%20optical%20depth%20variation%20at%20Zhongshan%20Station%20in%20Antarctica.%20%3Ci%3EEGUsphere%3C%5C%2Fi%3E%2C%201%26%23x2013%3B23.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fegusphere-2024-798%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fegusphere-2024-798%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Measurement%20report%3A%20Analysis%20of%20aerosol%20optical%20depth%20variation%20at%20Zhongshan%20Station%20in%20Antarctica%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lijing%22%2C%22lastName%22%3A%22Chen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lei%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yong%22%2C%22lastName%22%3A%22She%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhaoliang%22%2C%22lastName%22%3A%22Zeng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yu%22%2C%22lastName%22%3A%22Zheng%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Biao%22%2C%22lastName%22%3A%22Tian%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Wenqian%22%2C%22lastName%22%3A%22Zhang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zhaohui%22%2C%22lastName%22%3A%22Liu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Minghu%22%2C%22lastName%22%3A%22Ding%22%7D%5D%2C%22abstractNote%22%3A%22%3Cp%3E%3Cstrong%20class%3D%5C%22journal-contentHeaderColor%5C%22%3EAbstract.%3C%5C%2Fstrong%3E%20Our%20understanding%20of%20aerosol%20optical%20depth%20%28AOD%29%20in%20Antarctica%20remains%20limited%20due%20to%20the%20scarcity%20of%20ground%20observation%20stations%20and%20limited%20daylight%20days.%20Utilizing%20data%20from%20the%20CE318-T%20photometer%20spanning%20from%20January%202020%20to%20April%202023%20at%20Zhongshan%20Station%2C%20we%20analysed%20the%20seasonal%2C%20monthly%2C%20and%20diurnal%20variations%20in%20AOD%20and%20%26Aring%3Bngstr%26ouml%3Bm%20exponent%20%28AE%29.%20AOD%20median%20values%20increased%20from%20spring%20%280.033%29%20to%20winter%20%280.115%29%2C%20while%20AE%20peaked%20during%20summer%20%281.010%29%20and%20autumn%20%281.034%29%2C%20declining%20in%20winter%20%280.381%29%2C%20indicating%20a%20transition%20in%20dominant%20aerosol%20particle%20size%20from%20fine%20to%20coarse%20mode%20between%20summer%20and%20winter.%20Monthly%20mean%20AOD%20variation%20closely%20paralleled%20the%20proportion%20of%20AE%26lt%3B1%2C%20suggesting%20fluctuations%20in%20coarse%20mode%20particle%20proportions%20drive%20AOD%20variation.%20Increases%20in%20AOD%20during%20spring%20and%20winter%20correlated%20with%20decreases%20in%20fine%20mode%20fraction%2C%20while%20increases%20during%20summer%20and%20winter%20related%20to%20fine%20mode%20particle%20growth%20and%20aging.%20We%20observed%20a%20peak%20in%20AOD%20%28~0.06%29%20at%2014%3A00%20local%20time%20at%20Zhongshan%20Station%2C%20possibly%20associated%20with%20a%20slight%20decrease%20in%20boundary%20layer%20height%20%28BLH%29.%20Additionally%2C%20higher%20%28lower%29%20wind%20speeds%20corresponded%20to%20lower%20%28higher%29%20AOD%20values%2C%20indicating%20the%20diffusion%20%28accumulation%29%20effect.%20The%20temperature%20and%20AOD%20showed%20an%20insignificant%20positive%20correlation%20between%20%28R%20%3D%200.22%2C%20p%20%3D%200.40%29%2C%20relative%20humidity%20exhibited%20a%20significant%20negative%20correlation%20with%20AOD%20%28R%20%3D%20-0.59%2C%20p%20%3D%200.02%29.%20Backward%20trajectory%20analysis%20revealed%20that%20coarse%20particles%20from%20the%20ocean%20predominantly%20contributed%20to%20high%20AOD%20daily%20mean%20values%20in%20summer%2C%20while%20fine%20particles%20on%20low%20AOD%20days%20originated%20mainly%20from%20the%20air%20mass%20over%20the%20Antarctic%20Plateau.%3C%5C%2Fp%3E%22%2C%22date%22%3A%222024%5C%2F07%5C%2F25%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.5194%5C%2Fegusphere-2024-798%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fegusphere.copernicus.org%5C%2Fpreprints%5C%2F2024%5C%2Fegusphere-2024-798%5C%2F%22%2C%22collections%22%3A%5B%22K6F5CX26%22%5D%2C%22dateModified%22%3A%222024-11-16T06%3A54%3A03Z%22%7D%7D%2C%7B%22key%22%3A%22HKQHESM9%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Xia%20and%20McFarquhar%22%2C%22parsedDate%22%3A%222024-06-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EXia%2C%20Z.%2C%20%26amp%3B%20McFarquhar%2C%20G.%20M.%20%282024%29.%20Dependence%20of%20Cloud%20Macrophysical%20Properties%20and%20Phase%20Distributions%20on%20Environmental%20Conditions%20Over%20the%20North%20Atlantic%20and%20Southern%20Ocean%3A%20Results%20From%20COMBLE%20and%20MARCUS.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%2812%29%2C%20e2023JD039869.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD039869%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD039869%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Dependence%20of%20Cloud%20Macrophysical%20Properties%20and%20Phase%20Distributions%20on%20Environmental%20Conditions%20Over%20the%20North%20Atlantic%20and%20Southern%20Ocean%3A%20Results%20From%20COMBLE%20and%20MARCUS%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Zeqian%22%2C%22lastName%22%3A%22Xia%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Greg%20M.%22%2C%22lastName%22%3A%22McFarquhar%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20accurate%20representation%20of%20Cold%20Air%20Outbreaks%20%28CAOs%29%20and%20affiliated%20mixed%5Cu2010phase%20boundary%20layer%20%28BL%29%20clouds%20in%20models%20is%20challenging.%20How%20BL%20cloud%20properties%20evolve%20during%20CAOs%20and%20their%20dependence%20on%20meteorological%20conditions%20is%20not%20well%20understood%20but%20is%20important%20for%20the%20simulation%20of%20Earth%27s%20energy%20budgets.%20Here%20the%20properties%20of%20polar%20BL%20clouds%20over%20the%20North%20Atlantic%20%28NA%29%20and%20Southern%20Ocean%20%28SO%29%20are%20compared%20using%20observations%20from%20the%20Measurements%20of%20Aerosol%20Radiation%20and%20CloUds%20over%20the%20SO%20%28MARCUS%29%20and%20CAOs%20in%20the%20Marine%20BL%20Experiment%20%28COMBLE%29%20conducted%20over%20the%20NA.%20MARCUS%20observations%20show%20a%20stronger%20BL%20inversion%20than%20COMBLE%2C%20with%20a%20higher%20mean%20EIS%20%28estimated%20inversion%20strength%29%5C%2FLTS%20%28lower%20tropospheric%20stability%29%20of%20%5Cu22120.03%5Cu00a0K%5C%2F13%5Cu00a0K%20compared%20to%20COMBLE%5Cu2019s%20%5Cu22123.2%5Cu00a0K%5C%2F9.3%5Cu00a0K.%2039%25%20of%20CAOs%20observed%20during%20COMBLE%20were%20intense%20with%20M%5Cu00a0%3E%5Cu00a05%5Cu00a0K%2C%20while%20MARCUS%20only%20had%201.3%25.%2078%25%5C%2F72%25%20of%20clouds%20sampled%20in%20CAOs%20during%20COMBLE%5C%2FMARCUS%20had%20cloud%20top%20heights%20%3C4%5Cu00a0km.%20The%20mean%20BL%20cloud%20top%20height%20was%20over%20400%5Cu00a0m%20higher%2C%20and%20the%20BL%20was%20over%20500%5Cu00a0m%20deeper%20for%20M%20of%2010%5Cu00a0K%20compared%20to%200%5Cu00a0K%20for%20both%20regions.%20MARCUS%20observed%20a%2027%25%20moister%20BL%20structure%20than%20COMBLE%20when%20M%5Cu00a0%3E%5Cu00a05%5Cu00a0K%20due%20to%20stronger%20BL%20inversion%20trapping%20more%20moisture%20within%20the%20BL.%20Under%20the%20same%20LTS%2C%20EIS%2C%20and%20M%20conditions%2C%20MARCUS%20observed%20a%2012%25%20drier%20BL%20structure%2C%20and%20clouds%20were%2046%25%20more%20turbulent%20than%20COMBLE.%20During%20CAOs%2C%2054%25%20of%20single%5Cu2010layer%20BL%20clouds%20sampled%20during%20MARCUS%20had%20liquid%5Cu2010dominated%20bases%20compared%20to%2039%25%20during%20COMBLE.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Arctic%20and%20SO%20have%20large%20areas%20of%20sea%20ice%2C%20providing%20ideal%20conditions%20for%20development%20of%20frequent%20and%20intense%20cold%20air%20outbreaks%20%28CAOs%29.%20CAOs%20occur%20when%20cold%20air%20over%20ice%20moves%20away%20from%20the%20poles%20over%20warmer%20oceans.%20Clouds%20over%20high%20latitudes%20that%20occur%20during%20CAOs%20impact%20Earth%27s%20radiative%20balance%2C%20but%20prior%20observations%20of%20them%20are%20very%20limited%20and%20hence%20how%20the%20properties%20of%20these%20clouds%20depend%20on%20environmental%20conditions%20are%20not%20well%20known.%20Two%20field%20campaigns%20conducted%20over%20the%20Southern%20Ocean%20and%20North%20Atlantic%20provide%20measurements%20that%20allow%20the%20dependence%20of%20the%20environmental%20impact%20on%20clouds%20to%20be%20uncovered%2C%20and%20to%20determine%20whether%20the%20properties%20of%20these%20clouds%20differ%20whether%20they%20form%20in%20the%20Northern%20or%20Southern%20Hemisphere.%20The%20dependence%20of%20vertical%20cloud%20structure%2C%20the%20composition%20of%20clouds%20%28whether%20ice%20or%20water%20dominates%20at%20temperatures%20%3C0%5Cu00b0C%29%2C%20and%20the%20vertical%20structure%20of%20the%20lowest%20layer%20of%20the%20atmosphere%20on%20environmental%20conditions%20are%20presented.%20Results%20show%20that%20low%5Cu2010level%20clouds%20dominate%20in%20both%20regions%20during%20CAOs%2C%20with%20clouds%20higher%20and%20deeper%20in%20more%20intense%20CAOs.%20Even%20accounting%20for%20dependence%20on%20environmental%20conditions%2C%20there%20are%20still%20differences%20in%20cloud%20properties%20over%20the%20North%20Atlantic%20and%20Southern%20Ocean%20that%20need%20further%20investigation.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Boundary%20layer%20clouds%20are%20common%20during%20cold%20air%20outbreaks%20in%20both%20North%20Atlantic%20and%20Southern%20Ocean%20regions%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Cold%20air%20outbreaks%20are%20more%20intense%20over%20the%20North%20Atlantic%2C%20whereas%20boundary%20layer%20inversion%20is%20stronger%20over%20the%20Southern%20Ocean%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Boundary%20layer%20cloud%20properties%20differ%20with%20location%20even%20when%20accounting%20for%20environmental%20conditions%22%2C%22date%22%3A%222024-06-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JD039869%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JD039869%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-08T22%3A13%3A58Z%22%7D%7D%2C%7B%22key%22%3A%22MXX4QZ73%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Mace%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EMace%2C%20G.%20G.%2C%20Benson%2C%20S.%2C%20Sterner%2C%20E.%2C%20Protat%2C%20A.%2C%20Humphries%2C%20R.%2C%20%26amp%3B%20Hallar%2C%20A.%20G.%20%282024%29.%20The%20Association%20Between%20Cloud%20Droplet%20Number%20over%20the%20Summer%20Southern%20Ocean%20and%20Air%20Mass%20History.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%2812%29%2C%20e2023JD040673.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD040673%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD040673%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22The%20Association%20Between%20Cloud%20Droplet%20Number%20over%20the%20Summer%20Southern%20Ocean%20and%20Air%20Mass%20History%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gerald%20G.%22%2C%22lastName%22%3A%22Mace%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sally%22%2C%22lastName%22%3A%22Benson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elizabeth%22%2C%22lastName%22%3A%22Sterner%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Alain%22%2C%22lastName%22%3A%22Protat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ruhi%22%2C%22lastName%22%3A%22Humphries%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20Gannet%22%2C%22lastName%22%3A%22Hallar%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20cloud%20properties%20and%20governing%20processes%20in%20Southern%20Ocean%20marine%20boundary%20layer%20clouds%20have%20emerged%20as%20a%20central%20issue%20in%20understanding%20the%20Earth%27s%20climate%20sensitivity.%20While%20our%20understanding%20of%20Southern%20Ocean%20cloud%20feedbacks%20have%20evolved%20in%20the%20most%20recent%20climate%20model%20intercomparison%2C%20the%20background%20properties%20of%20simulated%20summertime%20clouds%20in%20the%20Southern%20Ocean%20are%20not%20consistent%20with%20measurements%20due%20to%20known%20biases%20in%20simulating%20cloud%20condensation%20nuclei%20concentrations.%20This%20paper%20presents%20several%20case%20studies%20collected%20during%20the%20Capricorn%202%20and%20Marcus%20campaigns%20held%20aboard%20Australian%20research%20vessels%20in%20the%20Austral%20Summer%20of%202018.%20Combining%20the%20surface%5Cu2010observed%20cases%20with%20MODIS%20data%20along%20forward%20and%20backward%20air%20mass%20trajectories%2C%20we%20demonstrate%20the%20evolution%20of%20cloud%20properties%20with%20time.%20These%20cases%20are%20consistent%20with%20multi%5Cu2010year%20statistics%20showing%20that%20long%20trajectories%20of%20air%20masses%20over%20the%20Antarctic%20ice%20sheet%20are%20critical%20to%20creating%20high%20droplet%20number%20clouds%20in%20the%20high%20latitude%20summer%20Southern%20Ocean.%20We%20speculate%20that%20secondary%20aerosol%20production%20via%20the%20oxidation%20of%20biogenically%20derived%20aerosol%20precursor%20gasses%20over%20the%20high%20actinic%20flux%20region%20of%20the%20high%20latitude%20ice%20sheets%20is%20fundamental%20to%20maintaining%20relatively%20high%20droplet%20numbers%20in%20Southern%20Ocean%20clouds%20during%20Summer.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20amount%20of%20warming%20the%20Earth%20will%20experience%20because%20of%20increasing%20carbon%20dioxide%20levels%20in%20the%20atmosphere%20is%20sensitive%20to%20the%20properties%20of%20clouds%20that%20occur%20over%20the%20Southern%20Ocean.%20The%20atmosphere%20over%20the%20circumpolar%20Southern%20Ocean%20is%20poorly%20understood%20and%20presents%20significant%20challenges%20to%20climate%20models.%20Here%20we%20document%20the%20properties%20of%20the%20ubiquitous%20Southern%20Ocean%20low%5Cu2010level%20clouds%20that%20exert%20a%20strong%20influence%20on%20the%20albedo%20of%20this%20region.%20We%20find%20that%20high%20cloud%20droplet%20number%20concentrations%20are%20associated%20with%20air%20masses%20that%20have%20taken%20paths%20over%20the%20high%5Cu2010altitude%20ice%20sheets.%20The%20chemistry%20of%20the%20aerosol%20on%20which%20the%20cloud%20droplets%20form%20suggests%20that%20aerosols%20that%20have%20recently%20condensed%20from%20gasses%20emitted%20by%20phytoplankton%20in%20the%20highly%20productive%20waters%20near%20Antarctica%20are%20an%20important%20component%20of%20the%20cloud%20properties%20that%20must%20be%20correctly%20simulated%20in%20models.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20High%20cloud%20droplet%20number%20concentrations%20are%20associated%20with%20air%20masses%20that%20have%20recently%20passed%20over%20continental%20Antarctica%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Cloud%20droplet%20number%20concentrations%20decrease%20with%20time%20as%20clouds%20evolve%20in%20over%5Cu2010water%20trajectories%20due%20to%20scavenging%20by%20precipitation%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Katabatic%20flows%20bring%20high%20concentrations%20of%20cloud%20condensation%20nuclei%20to%20the%20marine%20boundary%20layer%20where%20they%20influence%20cloud%20properties%22%2C%22date%22%3A%222024-06-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JD040673%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JD040673%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-08T22%3A13%3A21Z%22%7D%7D%2C%7B%22key%22%3A%22W3PFKHP6%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dietel%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-27%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDietel%2C%20B.%2C%20Sourdeval%2C%20O.%2C%20%26amp%3B%20Hoose%2C%20C.%20%282024%29.%20Characterisation%20of%20low-base%20and%20mid-base%20clouds%20and%20their%20thermodynamic%20phase%20over%20the%20Southern%20Ocean%20and%20Arctic%20marine%20regions.%20%3Ci%3EAtmospheric%20Chemistry%20and%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E24%3C%5C%2Fi%3E%2812%29%2C%207359%26%23x2013%3B7383.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Facp-24-7359-2024%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Facp-24-7359-2024%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Characterisation%20of%20low-base%20and%20mid-base%20clouds%20and%20their%20thermodynamic%20phase%20over%20the%20Southern%20Ocean%20and%20Arctic%20marine%20regions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Barbara%22%2C%22lastName%22%3A%22Dietel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Odran%22%2C%22lastName%22%3A%22Sourdeval%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Corinna%22%2C%22lastName%22%3A%22Hoose%22%7D%5D%2C%22abstractNote%22%3A%22Abstract.%20The%20thermodynamic%20phase%20of%20clouds%20in%20low%20and%20middle%20levels%20over%20the%20Southern%20Ocean%20and%20the%20Arctic%20marine%20regions%20is%20poorly%20known%2C%20leading%20to%20uncertainties%20in%20the%20radiation%20budget%20in%20weather%20and%20climate%20models.%20To%20improve%20the%20knowledge%20of%20the%20cloud%20phase%2C%20we%20analyse%202%20years%20of%20the%20raDAR-liDAR%20%28DARDAR%29%20dataset%20based%20on%20active%20satellite%20instruments.%20We%20classify%20clouds%20according%20to%20their%20base%20and%20top%20height%20and%20focus%20on%20low-%2C%20mid-%2C%20and%20mid-%20to%20low-level%20clouds%20as%20they%20are%20the%20most%20frequent%20in%20the%20mixed-phase%20temperature%20regime.%20Low-level%20single-layer%20clouds%20occur%20in%208%5Cu2009%25%5Cu201315%5Cu2009%25%20of%20all%20profiles%2C%20but%20single-layer%20clouds%20spanning%20the%20mid-level%20also%20amount%20to%20approx.%2015%5Cu2009%25.%20Liquid%20clouds%20show%20mainly%20a%20smaller%20vertical%20extent%20but%20a%20horizontally%20larger%20extent%20compared%20to%20ice%20clouds.%20The%20results%20show%20the%20highest%20liquid%20fractions%20for%20low-level%20and%20mid-level%20clouds.%20Two%20local%20minima%20in%20the%20liquid%20fraction%20are%20observed%20around%20cloud%20top%20temperatures%20of%20%5Cu221215%20and%20%5Cu22125%5Cu2009%5Cu00b0C.%20Mid-level%20and%20mid-%20to%20low-level%20clouds%20over%20the%20Southern%20Ocean%20and%20low-level%20clouds%20in%20both%20polar%20regions%20show%20higher%20liquid%20fractions%20if%20they%20occur%20over%20sea%20ice%20compared%20to%20the%20open%20ocean.%20Low-level%20clouds%20and%20mid-%20to%20low-level%20clouds%20with%20high%20sea%20salt%20concentrations%2C%20used%20as%20a%20proxy%20for%20sea%20spray%2C%20show%20reduced%20liquid%20fractions.%20In%20mid-level%20clouds%2C%20dust%20shows%20the%20largest%20correlations%20with%20liquid%20fraction%2C%20with%20a%20lower%20liquid%20fraction%20for%20a%20higher%20dust%20aerosol%20concentration.%20Low-level%20clouds%20clearly%20show%20the%20largest%20contribution%20to%20the%20shortwave%20cloud%20radiative%20effect%20in%20both%20polar%20regions%2C%20followed%20by%20mid-%20to%20low-level%20clouds.%22%2C%22date%22%3A%222024-06-27%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.5194%5C%2Facp-24-7359-2024%22%2C%22ISSN%22%3A%221680-7324%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Facp.copernicus.org%5C%2Farticles%5C%2F24%5C%2F7359%5C%2F2024%5C%2F%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-08T22%3A12%3A38Z%22%7D%7D%2C%7B%22key%22%3A%228NZWV4E8%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Radenz%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ERadenz%2C%20M.%2C%20Engelmann%2C%20R.%2C%20Henning%2C%20S.%2C%20Schmith%26%23xFC%3Bsen%2C%20H.%2C%20Baars%2C%20H.%2C%20Frey%2C%20M.%20M.%2C%20Weller%2C%20R.%2C%20B%26%23xFC%3Bhl%2C%20J.%2C%20Jimenez%2C%20C.%2C%20Roschke%2C%20J.%2C%20Muser%2C%20L.%20O.%2C%20Wullenweber%2C%20N.%2C%20Zeppenfeld%2C%20S.%2C%20Griesche%2C%20H.%2C%20Wandinger%2C%20U.%2C%20%26amp%3B%20Seifert%2C%20P.%20%282024%29.%20Ground-based%20Remote%20Sensing%20of%20Aerosol%2C%20Clouds%2C%20Dynamics%2C%20and%20Precipitation%20in%20Antarctica%20%26%23x2014%3BFirst%20results%20from%20the%20one-year%20COALA%20campaign%20at%20Neumayer%20Station%20III%20in%202023.%20%3Ci%3EBulletin%20of%20the%20American%20Meteorological%20Society%3C%5C%2Fi%3E.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FBAMS-D-22-0285.1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1175%5C%2FBAMS-D-22-0285.1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Ground-based%20Remote%20Sensing%20of%20Aerosol%2C%20Clouds%2C%20Dynamics%2C%20and%20Precipitation%20in%20Antarctica%20%5Cu2014First%20results%20from%20the%20one-year%20COALA%20campaign%20at%20Neumayer%20Station%20III%20in%202023%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Radenz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ronny%22%2C%22lastName%22%3A%22Engelmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Silvia%22%2C%22lastName%22%3A%22Henning%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Holger%22%2C%22lastName%22%3A%22Schmith%5Cu00fcsen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Holger%22%2C%22lastName%22%3A%22Baars%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Markus%20M.%22%2C%22lastName%22%3A%22Frey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rolf%22%2C%22lastName%22%3A%22Weller%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Johannes%22%2C%22lastName%22%3A%22B%5Cu00fchl%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristofer%22%2C%22lastName%22%3A%22Jimenez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Johanna%22%2C%22lastName%22%3A%22Roschke%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lukas%20Ole%22%2C%22lastName%22%3A%22Muser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nellie%22%2C%22lastName%22%3A%22Wullenweber%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Sebastian%22%2C%22lastName%22%3A%22Zeppenfeld%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hannes%22%2C%22lastName%22%3A%22Griesche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ulla%22%2C%22lastName%22%3A%22Wandinger%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patric%22%2C%22lastName%22%3A%22Seifert%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Novel%20observations%20of%20aerosol%20and%20clouds%20by%20means%20of%20ground-based%20remote%20sensing%20have%20been%20performed%20in%20Antarctica%20over%20the%20Ekstr%5Cu00f6m%20ice%20shelf%20on%20the%20coast%20of%20Dronning%20Maud%20Land%20at%20Neumayer%20Station%20III%20%2870.67%5Cu00b0S%2C%208.27%5Cu00b0W%29%20from%20January%20to%20December%202023.%20The%20deployment%20of%20OCEANET-Atmosphere%20remote-sensing%20observatory%20in%20the%20framework%20of%20the%20Continuous%20Observations%20of%20Aerosol-cLoud%20interAction%20%28COALA%29%20campaign%20brought%20ACTRIS%20aerosol%20and%20cloud%20profiling%20capabilities%20next%20to%20meteorological%20and%20air%20chemistry%20in-situ%20observations%20at%20the%20Antarctic%20station.%20We%20present%20an%20overview%20of%20the%20site%2C%20the%20instrumental%20setup%20and%20data%20analysis%20strategy%20and%20introduce%203%20scientific%20highlights%20from%20austral%20fall%20and%20winter%2C%20namely%3A%201.%20Observations%20of%20a%20persistent%20mixed-phase%20cloud%20embedded%20in%20a%20plume%20of%20marine%20aerosol.%20Remote-sensing-based%20retrievals%20of%20cloud-relevant%20aerosol%20properties%20and%20cloud%20microphysical%20parameters%20confirm%20that%20the%20free-tropospheric%20mixed%20phase%20cloud%20layer%20formed%20in%20an%20aerosol-limited%20environment.%202.%20Two%20extraordinary%20warm%20air%20intrusions.%20One%20with%20intense%20snowfall%20produced%20the%20equivalent%20of%2010%25%20of%20the%20yearly%20snow%20accumulation%2C%20a%20second%20one%20with%20record-breaking%20maximum%20temperatures%20and%20heavy%20icing%20due%20to%20supercooled%20drizzle.%203.%20Omnipresent%20aerosol%20layers%20in%20the%20stratosphere.%20Our%20profiling%20capabilities%20could%20show%20that%2050%25%20of%20the%20500-nm%20aerosol%20optical%20depth%20of%200.06%20was%20caused%20by%20stratospheric%20aerosol%2C%20while%20the%20troposphere%20was%20usually%20pristine.%20As%20demonstrated%20by%20these%20highlights%2C%20the%20one-year%20COALA%20observations%20will%20serve%20as%20a%20reference%20dataset%20for%20the%20vertical%20structure%20of%20aerosol%20and%20clouds%20above%20the%20region%2C%20enabling%20future%20observational%20and%20modeling%20studies%20to%20advance%20understanding%20of%20atmospheric%20processes%20in%20Antarctica.%22%2C%22date%22%3A%222024-06-14%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1175%5C%2FBAMS-D-22-0285.1%22%2C%22ISSN%22%3A%220003-0007%2C%201520-0477%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fjournals.ametsoc.org%5C%2Fview%5C%2Fjournals%5C%2Fbams%5C%2Faop%5C%2FBAMS-D-22-0285.1%5C%2FBAMS-D-22-0285.1.xml%22%2C%22collections%22%3A%5B%223TEQUU4P%22%5D%2C%22dateModified%22%3A%222024-07-08T22%3A13%3A41Z%22%7D%7D%2C%7B%22key%22%3A%22BUVCD3A2%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Scarci%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-10%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EScarci%2C%20K.%2C%20Scott%2C%20R.%20C.%2C%20Ghiz%2C%20M.%20L.%2C%20Vogelmann%2C%20A.%20M.%2C%20%26amp%3B%20Lubin%2C%20D.%20%282024%29.%20Broadband%20and%20filter%20radiometers%20at%20Ross%20Island%2C%20Antarctica%3A%20detection%20of%20cloud%20ice%20phase%20versus%20liquid%20water%20influences%20on%20shortwave%20and%20longwave%20radiation.%20%3Ci%3EAtmospheric%20Chemistry%20and%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E24%3C%5C%2Fi%3E%2811%29%2C%206681%26%23x2013%3B6697.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Facp-24-6681-2024%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Facp-24-6681-2024%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Broadband%20and%20filter%20radiometers%20at%20Ross%20Island%2C%20Antarctica%3A%20detection%20of%20cloud%20ice%20phase%20versus%20liquid%20water%20influences%20on%20shortwave%20and%20longwave%20radiation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kristopher%22%2C%22lastName%22%3A%22Scarci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ryan%20C.%22%2C%22lastName%22%3A%22Scott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Madison%20L.%22%2C%22lastName%22%3A%22Ghiz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20M.%22%2C%22lastName%22%3A%22Vogelmann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Dan%22%2C%22lastName%22%3A%22Lubin%22%7D%5D%2C%22abstractNote%22%3A%22Abstract.%20Surface%20radiometer%20data%20from%20Ross%20Island%2C%20Antarctica%2C%20collected%20during%20the%20austral%20summer%202015%5Cu20132016%20by%20the%20US%20Department%20of%20Energy%20Atmospheric%20Radiation%20Measurement%20%28ARM%29%20program%20West%20Antarctic%20Radiation%20Experiment%20%28AWARE%29%2C%20are%20used%20to%20evaluate%20how%20shortwave%20and%20longwave%20irradiance%20respond%20to%20changing%20cloud%20properties%20as%20governed%20by%20contrasting%20meteorological%20regimes.%20Shortwave%20atmospheric%20transmittance%20is%20derived%20from%20pyranometer%20measurements%2C%20and%20cloud%20conservative-scattering%20optical%20depth%20is%20derived%20from%20filter%20radiometer%20measurements%20at%20870%5Cu2009nm.%20With%20onshore%20flow%20associated%20with%20marine%20air%20masses%2C%20clouds%20contain%20mostly%20liquid%20water.%20With%20southerly%20flow%20over%20the%20Transantarctic%20Mountains%2C%20orographic%20forcing%20induces%20substantial%20cloud%20ice%20water%20content.%20These%20ice%20and%20mixed-phase%20clouds%20attenuate%20more%20surface%20shortwave%20irradiance%20than%20the%20maritime-influenced%20clouds%20and%20also%20emit%20less%20longwave%20irradiance%20due%20to%20colder%20cloud%20base%20temperature.%20These%20detected%20irradiance%20changes%20are%20in%20a%20range%20that%20can%20mean%20onset%20or%20inhibition%20of%20surface%20melt%20over%20ice%20shelves.%20This%20study%20demonstrates%20how%20basic%20and%20relatively%20low-cost%20broadband%20and%20filter%20radiometers%20can%20be%20used%20to%20detect%20subtle%20climatological%20influences%20of%20contrasting%20cloud%20microphysical%20properties%20at%20very%20remote%20locations.%22%2C%22date%22%3A%222024-06-10%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.5194%5C%2Facp-24-6681-2024%22%2C%22ISSN%22%3A%221680-7324%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Facp.copernicus.org%5C%2Farticles%5C%2F24%5C%2F6681%5C%2F2024%5C%2F%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-08T22%3A13%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22Q7HR7BZ3%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Knight%20et%20al.%22%2C%22parsedDate%22%3A%222024-05-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKnight%2C%20C.%20L.%2C%20Mallet%2C%20M.%20D.%2C%20Alexander%2C%20S.%20P.%2C%20Fraser%2C%20A.%20D.%2C%20Protat%2C%20A.%2C%20%26amp%3B%20McFarquhar%2C%20G.%20M.%20%282024%29.%20Cloud%20Properties%20and%20Boundary%20Layer%20Stability%20Above%20Southern%20Ocean%20Sea%20Ice%20and%20Coastal%20Antarctica.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%2810%29%2C%20e2022JD038280.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JD038280%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2022JD038280%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Cloud%20Properties%20and%20Boundary%20Layer%20Stability%20Above%20Southern%20Ocean%20Sea%20Ice%20and%20Coastal%20Antarctica%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20L.%22%2C%22lastName%22%3A%22Knight%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20D.%22%2C%22lastName%22%3A%22Mallet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20P.%22%2C%22lastName%22%3A%22Alexander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20D.%22%2C%22lastName%22%3A%22Fraser%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Protat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%20M.%22%2C%22lastName%22%3A%22McFarquhar%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Significant%20variability%20in%20climate%20predictions%20originates%20from%20the%20simulated%20cloud%20cover%20over%20the%20Southern%20Ocean.%20Historically%2C%20Southern%20Ocean%20cloud%20and%20aerosol%20properties%20have%20been%20less%20studied%20than%20their%20northern%20hemisphere%20counterparts%2C%20and%20cloud%5Cu2010sea%5Cu2010ice%20interactions%20over%20the%20Southern%20Ocean%20also%20remain%20largely%20unexamined.%20We%20used%20data%20from%20combined%20radar%2C%20lidar%2C%20radiometer%2C%20radiosonde%2C%20and%20ERA5%20reanalysis%20profiles%20to%20investigate%20cloud%20property%20relationships%20to%20cloud%20temperature%2C%20sea%5Cu2010ice%20concentration%2C%20and%20boundary%20layer%20stability.%20Our%20findings%20show%20correlations%20between%20both%20cloud%20macrophysical%20properties%20and%20radiative%20effects%20and%20sea%5Cu2010ice%20concentration%2C%20and%20that%20the%20marine%20atmospheric%20boundary%20layer%20is%20more%20stable%20over%20higher%20sea%5Cu2010ice%20concentrations.%20Mixed%5Cu2010phase%20cloud%20frequency%20of%20occurrence%20was%20highest%20over%20the%20sea%5Cu2010ice%20zone%20at%2015%25%2C%20three%20times%20higher%20than%20over%20cold%20water%20south%20of%20the%20Antarctic%20Polar%20Front.%20For%20temperatures%20greater%20than%20%5Cu221215%5Cu00b0C%2C%20low%5Cu2010level%2C%20single%5Cu2010layer%20clouds%20were%20more%20likely%20to%20precipitate%20ice%20if%20they%20were%20coupled%20to%20cold%5Cu2010water%20or%20sea%5Cu2010ice%20surfaces%20than%20if%20they%20were%20decoupled%20from%20these%20surfaces%2C%20with%20the%20highest%20percentage%20of%20clouds%20precipitating%20ice%20observed%20over%20sea%20ice.%20These%20findings%20suggest%20a%20surface%20source%20of%20ice%5Cu2010nucleating%20particles%20at%20high%20southern%20latitudes%20that%20increases%20cloud%20glaciation%20probability.%20We%20discuss%20the%20implications%20of%20our%20results%20for%20future%20studies%20into%20the%20relationship%20between%20cloud%20properties%2C%20aerosols%2C%20sea%20ice%2C%20and%20boundary%20layer%20stability%20at%20high%20latitudes%20over%20the%20Southern%20Ocean.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20atmosphere%20above%20the%20Southern%20Ocean%20remains%20difficult%20for%20most%20modern%20climate%20models%20to%20simulate%20well.%20Clouds%20containing%20liquid%20water%20below%200%5Cu00b0C%2C%20also%20known%20as%20supercooled%20liquid%20water%2C%20are%20likely%20responsible%20for%20much%20of%20the%20simulation%20difficulties.%20In%20this%20study%20we%20investigated%20observations%20of%20the%20atmosphere%20made%20by%20several%20different%20instruments%20during%20a%20shipborne%20campaign%20from%202017%20to%202018%2C%20as%20well%20as%20satellite%20observations%20of%20sea%20ice.%20We%20found%20that%20clouds%20containing%20supercooled%20liquid%20water%20were%20more%20likely%20to%20occur%20above%20sea%20ice%20than%20above%20open%20ocean%20at%20high%20latitudes%2C%20and%20that%20the%20lowest%20layer%20of%20the%20atmosphere%20is%20more%20stable%20above%20sea%20ice%20than%20above%20open%20ocean.%20We%20also%20found%20that%2C%20over%20sea%20ice%2C%20clouds%20containing%20supercooled%20liquid%20water%20were%20less%20likely%20to%20contain%20and%20precipitate%20ice%20when%20these%20clouds%20were%20separated%20from%20the%20lowest%20layer%20of%20the%20atmosphere.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Colder%2C%20drier%20air%20over%20Antarctic%20sea%20ice%20is%20associated%20with%20increased%20inversion%20strength%20and%20stability%20of%20the%20atmospheric%20boundary%20layer%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20prevalence%20of%20mixed%5Cu2010phase%20clouds%20at%20high%20southerly%20latitudes%20is%20greatest%20over%20sea%20ice%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20For%20temperatures%20greater%20than%20%5Cu221210%5Cu00b0C%2C%20clouds%20coupled%20to%20the%20surface%20are%20more%20likely%20to%20contain%20ice%22%2C%22date%22%3A%222024-05-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2022JD038280%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2022JD038280%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-08T22%3A13%3A13Z%22%7D%7D%2C%7B%22key%22%3A%22IMK59WTE%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bazantay%20et%20al.%22%2C%22parsedDate%22%3A%222024-05-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBazantay%2C%20C.%2C%20Jourdan%2C%20O.%2C%20Mioche%2C%20G.%2C%20Uitz%2C%20J.%2C%20Dziduch%2C%20A.%2C%20Delano%26%23xEB%3B%2C%20J.%2C%20Cazenave%2C%20Q.%2C%20Sauz%26%23xE8%3Bde%2C%20R.%2C%20Protat%2C%20A.%2C%20%26amp%3B%20Sellegri%2C%20K.%20%282024%29.%20Relating%20Ocean%20Biogeochemistry%20and%20Low%26%23x2010%3BLevel%20Cloud%20Properties%20Over%20the%20Southern%20Oceans.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E51%3C%5C%2Fi%3E%2810%29%2C%20e2024GL108309.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024GL108309%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2024GL108309%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Relating%20Ocean%20Biogeochemistry%20and%20Low%5Cu2010Level%20Cloud%20Properties%20Over%20the%20Southern%20Oceans%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Bazantay%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Jourdan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Mioche%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Uitz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Dziduch%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Delano%5Cu00eb%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Q.%22%2C%22lastName%22%3A%22Cazenave%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Sauz%5Cu00e8de%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Protat%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Sellegri%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20There%20is%20growing%20evidence%20that%20marine%20microorganisms%20may%20influence%20cloud%20cover%20over%20the%20ocean%20through%20their%20impact%20on%20sea%20spray%20and%20trace%20gas%20emissions%2C%20further%20forming%20cloud%20droplets%20or%20ice%20crystals.%20However%2C%20evidence%20of%20a%20robust%20causal%20relationship%20based%20on%20observations%20is%20still%20pending.%20In%20this%20study%2C%20we%20use%204%5Cu00a0years%20of%20multi%5Cu2010instrument%20satellite%20data%20to%20segregate%20low%5Cu2010level%20clouds%20into%20ice%5Cu2010containing%20and%20liquid%5Cu2010water%20clouds%20to%20obtain%20clear%20relationships%20between%20cloud%20types%20and%20ocean%20biological%20tracers%2C%20especially%20with%20nanophytoplankton%20cell%20abundances.%20Results%20suggest%20that%20microorganisms%20may%20be%20involved%20in%20compensating%20effects%20on%20cloud%20properties%2C%20increasing%20the%20frequency%20of%20occurrence%20of%20warm%5Cu2010liquid%20clouds%2C%20and%20decreasing%20the%20occurrence%20of%20ice%5Cu2010containing%20clouds%20in%20most%20regions%20during%20springtime.%20The%20relationships%20observed%20in%20most%20regions%20do%20not%20apply%20to%20the%20South%20Pacific%20Ocean%20in%20the%2040%5Cu00b0S%5Cu201350%5Cu00b0S%20latitude%20band.%20These%20results%20shed%20light%20on%20overlooked%20potential%20compensating%20effects%20of%20ocean%20microorganisms%20on%20cloud%20cover.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Climate%20is%20governed%20by%20interactions%20between%20the%20ocean%20and%20the%20atmosphere.%20While%20physical%20interactions%20such%20as%20exchanges%20of%20heat%20and%20water%20vapor%20are%20fairly%20well%20understood%2C%20the%20role%20of%20biology%2C%20that%20is%2C%20the%20living%20marine%20microorganisms%2C%20on%20atmospheric%20processes%2C%20is%20a%20lot%20more%20complex.%20For%20instance%2C%20marine%20microorganisms%20may%20influence%20the%20number%20and%20the%20chemical%20composition%20of%20sea%20sprays%20and%20also%20emit%20trace%20gasses%20that%20will%20form%20tiny%20particles.%20Sea%20sprays%20and%20newly%20formed%20particles%20can%20then%20serve%20as%20nuclei%20on%20which%20cloud%20droplets%20or%20ice%20crystals%20form%2C%20therefore%20influencing%20cloud%20properties%20and%20climate.%20These%20chains%20of%20processes%20are%20theoretical%2C%20and%20there%20are%20few%20clear%20linkages%20between%20ocean%20biology%20and%20cloud%20properties%20derived%20from%20observational%20data.%20This%20study%20uses%20new%20satellite%20retrievals%20to%20establish%20relationships%20between%20cloud%20phase%20occurrence%20%28ice%2C%20warm%5Cu2010liquid%2C%20mixed%5Cu2010phase%20or%20supercooled%5Cu2010liquid%20clouds%29%20and%20the%20biological%20activity%20of%20the%20ocean%20in%20different%20regions%20of%20the%20southern%20ocean.%20For%20a%20given%20month%2C%20locations%20of%20higher%20abundance%20of%20phytoplankton%20corresponds%20to%20a%20higher%20warm%5Cu2010liquid%20cloud%20cover%20but%20lower%20ice%20cloud%20cover.%20These%20results%20suggest%20compensating%20effects%20of%20marine%20microorganisms%20on%20cloud%20lifetime%20via%20their%20potential%20to%20impact%20the%20formation%20of%20particles%20able%20to%20become%20water%20droplets%20or%20ice%20crystals.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Nanophytoplankton%20biomass%20shows%20more%20relations%20to%20cloud%20occurrences%20than%20Chlorophyll%5Cu2010a%20or%20Particulate%20Organic%20Carbon%20concentrations%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Higher%20nanophytoplankon%20abundance%20is%20positively%20linked%20to%20warm%5Cu2010liquid%20cloud%20frequency%20of%20occurrence%20in%20spring%20in%20most%20regions%20of%2040%5Cu00b0S%5Cu201360%5Cu00b0S%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Higher%20nanophytoplankton%20abundance%20is%20linked%20to%20a%20decrease%20in%20the%20ice%5Cu2010containing%20cloud%20frequency%20of%20occurrence%20in%20most%20regions%22%2C%22date%22%3A%222024-05-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2024GL108309%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2024GL108309%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-08T22%3A11%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22FAVX4FLF%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Niu%20et%20al.%22%2C%22parsedDate%22%3A%222024-05-16%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ENiu%2C%20Q.%2C%20McFarquhar%2C%20G.%20M.%2C%20Marchand%2C%20R.%2C%20Theisen%2C%20A.%2C%20Cavallo%2C%20S.%20M.%2C%20Flynn%2C%20C.%2C%20DeMott%2C%20P.%20J.%2C%20McCluskey%2C%20C.%20S.%2C%20Humphries%2C%20R.%20S.%2C%20%26amp%3B%20Hill%2C%20T.%20C.%20J.%20%282024%29.%2062%26%23xB0%3BS%20Witnesses%20the%20Transition%20of%20Boundary%20Layer%20Marine%20Aerosol%20Pattern%20Over%20the%20Southern%20Ocean%20%2850%26%23xB0%3BS%26%23x2013%3B68%26%23xB0%3BS%2C%2063%26%23xB0%3BE%26%23x2013%3B150%26%23xB0%3BE%29%20During%20the%20Spring%20and%20Summer%3A%20Results%20From%20MARCUS%20%28I%29.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%289%29%2C%20e2023JD040396.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD040396%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD040396%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%2262%5Cu00b0S%20Witnesses%20the%20Transition%20of%20Boundary%20Layer%20Marine%20Aerosol%20Pattern%20Over%20the%20Southern%20Ocean%20%2850%5Cu00b0S%5Cu201368%5Cu00b0S%2C%2063%5Cu00b0E%5Cu2013150%5Cu00b0E%29%20During%20the%20Spring%20and%20Summer%3A%20Results%20From%20MARCUS%20%28I%29%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Qing%22%2C%22lastName%22%3A%22Niu%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Greg%20M.%22%2C%22lastName%22%3A%22McFarquhar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roger%22%2C%22lastName%22%3A%22Marchand%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Adam%22%2C%22lastName%22%3A%22Theisen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steven%20M.%22%2C%22lastName%22%3A%22Cavallo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Connor%22%2C%22lastName%22%3A%22Flynn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%20J.%22%2C%22lastName%22%3A%22DeMott%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Christina%20S.%22%2C%22lastName%22%3A%22McCluskey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ruhi%20S.%22%2C%22lastName%22%3A%22Humphries%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Thomas%20C.%20J.%22%2C%22lastName%22%3A%22Hill%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20Atmospheric%20Radiation%20Measurement%20Mobile%20Facility%5Cu20102%20was%20installed%20onboard%20the%20research%20vessel%20Aurora%20Australis%20to%20measure%20aerosol%20properties%20during%20the%202017%5Cu20132018%20Measurement%20of%20Aerosols%2C%20Radiation%2C%20and%20CloUds%20over%20the%20pristine%20Southern%20ocean%20%28MARCUS%29%20Experiment%2C%20providing%20unique%20data%20on%20aerosols%20latitudinal%20and%20seasonal%20variation%2C%20including%20south%20of%2060%5Cu00b0S%20where%20previous%20observations%20are%20scarce.%20Data%20from%20a%20Cloud%20Condensation%20Nuclei%20%28CCN%29%20counter%20and%20Ultra%5Cu2010High%5Cu2010Sensitivity%20Aerosol%20Spectrometer%20show%20that%20both%20the%20number%20concentration%20%28%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20and%20size%20distribution%20of%20CCN%5Cu2010active%20aerosols%2C%20with%20diameters%20%28D%29%20between%2060%5Cu00a0nm%5Cu00a0%3C%5Cu00a0%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20D%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0%3C%5Cu00a01%2C000%5Cu00a0nm%20are%20different%20over%20the%20North%20Southern%20Ocean%20%28NSO%29%20%2850%5Cu00b0S%5Cu201360%5Cu00b0S%29%20and%20the%20South%20Southern%20Ocean%20%28SSO%29%20%2862%5Cu00b0S%5Cu201368%5Cu00b0S%29.%20The%20average%20NSO%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%200.2%25%20and%200.5%25%20supersaturation%20were%2028%25%20and%2049%25%20less%20than%20that%20over%20the%20SSO.%20This%20increase%20of%20CCN%20over%20the%20SSO%20is%20caused%20by%20the%20increase%20of%20aerosols%20with%2060%5Cu00a0nm%5Cu00a0%3C%5Cu00a0%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20D%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0%3C%5Cu00a0200%5Cu00a0nm%2C%20consistent%20with%20calculations%20of%20Aerosol%20Scattering%20Angstrom%20Exponents%20derived%20from%20a%20nephelometer.%20Aerosol%20hygroscopicity%20growth%20factor%20measured%20by%20the%20Hygroscopic%20Tandem%20Differential%20Mobility%20Analyzer%20stayed%20close%20to%201.41%20for%20aerosols%20with%2050%5Cu00a0nm%5Cu00a0%3C%5Cu00a0%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20D%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00a0%3C%5Cu00a0250%5Cu00a0nm%20over%20the%20SSO%2C%20but%20increased%20from%201.30%20to%201.67%20over%20the%20NSO%2C%20indicating%20different%20chemical%20compositions.%20Both%20CCN%20and%20Ice%20Nucleating%20Particles%20%28INPs%29%20showed%20a%20stronger%20variation%20with%20season%20than%20with%20latitude.%20The%20variation%20of%20heat%5Cu2010labile%20and%20presumably%20proteinacous%20INPs%20suggests%20an%20increase%20of%20ice%20nucleating%5Cu2010active%20microbes%20in%20summer.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20Atmospheric%20Radiation%20Measurement%20Mobile%20Facility%5Cu20102%20was%20installed%20onboard%20an%20ice%20breaker%20to%20measure%20small%20particles%20suspended%20in%20the%20air%20%28aerosols%29%2C%20particularly%20those%20with%20potential%20influences%20on%20cloud%20formation%20and%20evolution.%20The%202017%5Cu20132018%20Measurement%20of%20Aerosols%2C%20Radiation%2C%20and%20CloUds%20over%20the%20pristine%20Southern%20ocean%20%28MARCUS%29%20measurement%20campaign%20provides%20unique%20data%20on%20the%20latitudinal%20and%20seasonal%20variation%20of%20the%20suspended%20particles%2C%20including%20south%20of%2060%5Cu00b0S%20where%20previous%20observations%20are%20scarce.%20Data%20show%20that%20both%20the%20number%20concentration%20and%20size%20distribution%20of%20particles%20that%20serve%20as%20embryos%20of%20cloud%20droplets%20are%20different%20over%20the%20North%20Southern%20Ocean%20%28NSO%29%20%2850%5Cu00b0S%5Cu201360%5Cu00b0S%29%20and%20the%20South%20Southern%20Ocean%20%28SSO%29%20%2862%5Cu00b0S%5Cu201368%5Cu00b0S%29.%20There%20are%20greater%20concentrations%20of%20these%20embryos%20over%20the%20SSO%20for%20increased%20total%20amount%20of%20suspended%20particles%20there.%20These%20observations%20are%20consistent%20with%20data%20collected%20by%20other%20instruments%20that%20show%20differences%20over%20the%20NSO%20and%20SSO%20in%20how%20these%20suspended%20particles%20scatter%20radiation%20and%20how%20they%20absorb%20water%20vapor%2C%20which%20shows%20the%20particles%20have%20different%20sizes%20and%20chemical%20compositions%20respectively.%20The%20concentrations%20of%20both%20particles%20that%20serve%20as%20embryos%20for%20cloud%20drops%20and%20ice%20crystals%20both%20vary%20more%20with%20season%20than%20latitude%2C%20which%20has%20an%20implication%20for%20the%20energy%20balance%20of%20the%20Southern%20Ocean.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Machine%20Learning%20is%20applied%20to%20identify%20ship%20stack%20contamination%20of%20ship%5Cu2010borne%20aerosol%20measurements%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Surface%20Cloud%20Condensation%20Nuclei%20number%20concentration%20and%20its%20seasonal%20variation%20over%2062%5Cu00b0S%5Cu201368%5Cu00b0S%20is%20higher%20than%20over%2050%5Cu00b0S%5Cu201360%5Cu00b0S%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Ice%20Nucleating%20Particles%20over%20the%20Southern%20Ocean%20originate%20from%20primarily%20organic%20and%20biological%20sources%20during%20MARCUS%22%2C%22date%22%3A%222024-05-16%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JD040396%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JD040396%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-08T22%3A13%3A29Z%22%7D%7D%2C%7B%22key%22%3A%22K5H24YBA%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Cesana%20et%20al.%22%2C%22parsedDate%22%3A%222024-04-06%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECesana%2C%20G.%20V.%2C%20Ackerman%2C%20A.%20S.%2C%20Fridlind%2C%20A.%20M.%2C%20Silber%2C%20I.%2C%20Del%20Genio%2C%20A.%20D.%2C%20Zelinka%2C%20M.%20D.%2C%20Chepfer%2C%20H.%2C%20Khadir%2C%20T.%2C%20%26amp%3B%20Roehrig%2C%20R.%20%282024%29.%20Observational%20constraint%20on%20a%20feedback%20from%20supercooled%20clouds%20reduces%20projected%20warming%20uncertainty.%20%3Ci%3ECommunications%20Earth%20%26amp%3B%20Environment%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%281%29%2C%20181.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs43247-024-01339-1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs43247-024-01339-1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Observational%20constraint%20on%20a%20feedback%20from%20supercooled%20clouds%20reduces%20projected%20warming%20uncertainty%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gr%5Cu00e9gory%20V.%22%2C%22lastName%22%3A%22Cesana%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20S.%22%2C%22lastName%22%3A%22Ackerman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Ann%20M.%22%2C%22lastName%22%3A%22Fridlind%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Israel%22%2C%22lastName%22%3A%22Silber%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anthony%20D.%22%2C%22lastName%22%3A%22Del%20Genio%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mark%20D.%22%2C%22lastName%22%3A%22Zelinka%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H%5Cu00e9l%5Cu00e8ne%22%2C%22lastName%22%3A%22Chepfer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Th%5Cu00e9odore%22%2C%22lastName%22%3A%22Khadir%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Romain%22%2C%22lastName%22%3A%22Roehrig%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20increase%20of%20carbon-dioxide-doubling-induced%20warming%20%28climate%20sensitivity%29%20in%20the%20latest%20climate%20models%20is%20primarily%20attributed%20to%20a%20larger%20extratropical%20cloud%20feedback.%20This%20is%20thought%20to%20be%20partly%20driven%20by%20a%20greater%20ratio%20of%20supercooled%20liquid-phase%20clouds%20to%20all%20clouds%2C%20termed%20liquid%20phase%20ratio.%20We%20use%20an%20instrument%20simulator%20approach%20to%20show%20that%20this%20ratio%20has%20increased%20in%20the%20latest%20climate%20models%20and%20is%20overestimated%20rather%20than%20underestimated%20as%20previously%20thought.%20In%20our%20analysis%20of%20multiple%20models%2C%20a%20greater%20ratio%20corresponds%20to%20stronger%20negative%20cloud%20feedback%2C%20in%20contradiction%20with%20single-model-based%20studies.%20We%20trace%20this%20unexpected%20result%20to%20a%20cloud%20feedback%20involving%20a%20shift%20from%20supercooled%20to%20warm%20clouds%20as%20climate%20warms%2C%20which%20corresponds%20to%20greater%20cloud%20amount%20and%20optical%20depth%20and%20weakens%20the%20extratropical%20cloud%20feedback.%20Better%20constraining%20this%20ratio%20in%20climate%20models%20%5Cu2013%20and%20thus%20this%20supercooled%20cloud%20feedback%20%5Cu2013%20impacts%20their%20climate%20sensitivities%20by%20up%20to%201%20%5Cu02daC%20and%20reduces%20inter-model%20spread.%22%2C%22date%22%3A%222024-04-06%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs43247-024-01339-1%22%2C%22ISSN%22%3A%222662-4435%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs43247-024-01339-1%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-08T22%3A12%3A30Z%22%7D%7D%2C%7B%22key%22%3A%22FPQ57ACD%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Reid%20et%20al.%22%2C%22parsedDate%22%3A%222024-03-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EReid%2C%20K.%20J.%2C%20Arblaster%2C%20J.%20M.%2C%20Alexander%2C%20L.%20V.%2C%20%26amp%3B%20Siems%2C%20S.%20T.%20%282024%29.%20Spurious%20Trends%20in%20High%20Latitude%20Southern%20Hemisphere%20Precipitation%20Observations.%20%3Ci%3EGeophysical%20Research%20Letters%3C%5C%2Fi%3E%2C%20%3Ci%3E51%3C%5C%2Fi%3E%286%29%2C%20e2023GL106994.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL106994%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023GL106994%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Spurious%20Trends%20in%20High%20Latitude%20Southern%20Hemisphere%20Precipitation%20Observations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kimberley%20J.%22%2C%22lastName%22%3A%22Reid%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julie%20M.%22%2C%22lastName%22%3A%22Arblaster%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Lisa%20V.%22%2C%22lastName%22%3A%22Alexander%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Steven%20T.%22%2C%22lastName%22%3A%22Siems%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20high%20latitude%20Southern%20Hemisphere%20%28SH%29%20is%20an%20important%20region%20for%20Earth%27s%20climate.%20Ocean%20heat%20content%2C%20cryosphere%20interactions%2C%20Antarctic%20bottom%20water%20development%20and%20the%20cloud%5Cu2010albedo%20feedbacks%20need%20to%20be%20understood%20to%20form%20a%20complete%20picture%20of%20the%20climate%20system.%20However%2C%20the%20high%20latitude%20SH%20is%20one%20of%20the%20most%20under%5Cu2010observed%20regions%20due%20to%20its%20remoteness.%20The%20advent%20of%20satellites%20and%20reanalyses%20have%20improved%20our%20monitoring%20of%20this%20region.%20Some%20previous%20studies%20observed%20an%20increase%20in%20precipitation%20over%20the%20SH%20high%20latitudes%2C%20however%20we%20argue%20that%20some%20of%20the%20trends%20in%20commonly%20used%20data%20sets%20may%20be%20artifacts.%20We%20use%20regression%20analysis%20of%20trends%20in%20precipitation%20and%20the%20Southern%20Annular%20Mode%20to%20contrast%20these%20relationships%20in%20satellite%20and%20reanalysis%20products%2C%20and%20to%20evaluate%20precipitation%20over%20the%20SH.%20We%20suggest%20that%20sensor%20changes%20and%20the%20lack%20of%20in%20situ%20data%20available%20for%20calibration%20may%20be%20responsible%20for%20unusual%20precipitation%20patterns%20especially%20around%2065%5Cu00b0S.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Many%20important%20processes%20in%20the%20Earth%27s%20climate%20occur%20at%20high%20latitudes%20in%20the%20Southern%20Hemisphere.%20However%2C%20due%20to%20its%20remoteness%20and%20inhospitable%20conditions%2C%20scientists%20have%20trouble%20obtaining%20data%20for%20this%20region.%20Satellites%20have%20helped%20to%20provide%20information%20about%20this%20area%20but%20are%20not%20well%20constrained%20due%20to%20a%20lack%20of%20in%20situ%20data.%20Sensor%20changes%20and%20the%20launch%20of%20new%20satellites%20means%20that%20the%20data%20can%20vary%20in%20quality%20and%20reliability%20over%20time.%20By%20comparing%20precipitation%20trends%20over%20the%20Southern%20Hemisphere%20with%20known%20climate%20patterns%2C%20we%20suggest%20that%20an%20observed%20increase%20in%20precipitation%20over%20the%20Southern%20Hemisphere%20high%20latitudes%20may%20be%20due%20to%20variations%20in%20the%20satellite%20technology%20rather%20than%20a%20physical%20increase%20in%20precipitation.%20This%20is%20important%20for%20understanding%20the%20impacts%20of%20climate%20change%20on%20Earth%27s%20water%20cycle%20and%20heat%20storage.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20High%20latitude%20precipitation%20trends%20are%20likely%20artifacts%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Sensor%20changes%20may%20be%20responsible%20for%20spurious%20trends%20in%20the%20Southern%20Ocean%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Satellite%20products%20do%20not%20agree%20on%20the%20zonal%20mean%20precipitation%20pattern%20in%20the%20Southern%20Hemisphere%22%2C%22date%22%3A%222024-03-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023GL106994%22%2C%22ISSN%22%3A%220094-8276%2C%201944-8007%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023GL106994%22%2C%22collections%22%3A%5B%22K6F5CX26%22%5D%2C%22dateModified%22%3A%222024-04-09T05%3A35%3A24Z%22%7D%7D%2C%7B%22key%22%3A%22XXLAS2HE%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Kang%20et%20al.%22%2C%22parsedDate%22%3A%222024-03-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EKang%2C%20L.%2C%20Marchand%2C%20R.%20T.%2C%20%26amp%3B%20Wood%2C%20R.%20%282024%29.%20Stratocumulus%20Precipitation%20Properties%20Over%20the%20Southern%20Ocean%20Observed%20From%20Aircraft%20During%20the%20SOCRATES%20Campaign.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%286%29%2C%20e2023JD039831.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD039831%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD039831%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Stratocumulus%20Precipitation%20Properties%20Over%20the%20Southern%20Ocean%20Observed%20From%20Aircraft%20During%20the%20SOCRATES%20Campaign%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Kang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%20T.%22%2C%22lastName%22%3A%22Marchand%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Wood%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Precipitation%20plays%20an%20important%20role%20in%20cloud%20and%20aerosol%20processes%20over%20the%20Southern%20Ocean%20%28SO%29.%20The%20main%20objective%20of%20this%20study%20is%20to%20characterize%20SO%20precipitation%20properties%20associated%20with%20SO%20stratocumulus%20clouds.%20We%20use%20data%20from%20the%20Southern%20Ocean%20Clouds%20Radiation%20Aerosol%20Transport%20Experimental%20Study%20%28SOCRATES%29%2C%20and%20leverage%20observations%20from%20airborne%20radar%2C%20lidar%2C%20and%20in%20situ%20probes.%20We%20find%20that%20for%20the%20cold%5Cu2010topped%20clouds%20%28cloud%5Cu2010top%5Cu2010temperature%20%3C0%5Cu00b0C%29%2C%20the%20phase%20of%20precipitation%20with%20reflectivity%20%3E0%5Cu00a0dBZ%20is%20predominantly%20ice%2C%20while%20reflectivity%20%3C%20%5Cu221210%5Cu00a0dBZ%20is%20predominantly%20liquid.%20Liquid%5Cu2010phase%20precipitation%20properties%20are%20retrieved%20where%20radar%20and%20lidar%20are%20zenith%5Cu2010pointing.%20Power%5Cu2010law%20relationships%20between%20reflectivity%20%28Z%29%20and%20rain%20rate%20%28R%29%20are%20developed%2C%20and%20the%20derived%20Z%5Cu2013R%20relationships%20show%20vertical%20dependence%20and%20sensitivity%20to%20the%20presence%20of%20droplets%20with%20diameters%20between%2010%20and%2040%5Cu00a0%5Cu03bcm.%20Using%20derived%20Z%5Cu2013R%20relationships%2C%20a%20reflectivity%5Cu2010velocity%20%28ZV%29%20retrieval%20method%2C%20and%20a%20radar%5Cu2010lidar%20retrieval%20method%2C%20we%20derive%20rain%20rate%20and%20other%20precipitation%20properties.%20The%20retrieved%20rain%20rate%20from%20all%20three%20methods%20shows%20good%20agreement%20with%20in%5Cu2010situ%20aircraft%20estimates%2C%20with%20rain%20rates%20typically%20being%20quite%20light%20%28%3C0.1%5Cu00a0mm%5Cu00a0hr%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20We%20examine%20the%20vertical%20distribution%20of%20precipitation%20properties%2C%20and%20find%20that%20rain%20rate%2C%20precipitation%20number%20concentration%2C%20and%20precipitation%20liquid%20water%20all%20decrease%20as%20one%20gets%20closer%20to%20the%20surface%2C%20while%20precipitation%20size%20and%20distribution%20width%20increases.%20We%20also%20examine%20how%20cloud%20base%20rain%20rate%20%28%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20R%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CB%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20depends%20on%20cloud%20depth%20%28H%29%20and%20aerosol%20concentration%20%28%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20a%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20for%20particles%20with%20a%20diameter%20greater%20than%2070%5Cu00a0nm%2C%20and%20find%20that%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20R%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20CB%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20is%20proportional%20to%20.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Precipitation%20plays%20an%20important%20role%20over%20the%20Southern%20Ocean%20%28SO%29%2C%20such%20as%20transferring%20water%20from%20the%20atmosphere%20to%20the%20ocean%2C%20and%20affecting%20clouds%20and%20aerosols%20%28tiny%20airborne%20particles%29.%20This%20study%20aims%20to%20characterize%20SO%20precipitation%20properties%20using%20aircraft%20data%20that%20can%20count%20the%20number%20and%20size%20of%20cloud%20and%20precipitation%20droplets%2C%20as%20well%20as%20lidar%20and%20radar%20that%20measure%20light%20and%20microwaves%20respectively%20reflected%20by%20droplets.%20Using%20information%20from%20lidar%2C%20we%20can%20distinguish%20the%20precipitation%20phase%2C%20and%20we%20find%20that%20ice%20precipitation%20is%20more%20frequent%20when%20the%20amount%20of%20reflected%20energy%20measured%20by%20the%20radar%20%28radar%20reflectivity%29%20is%20larger%20than%20a%20certain%20threshold.%20We%20derived%20relationships%20between%20rain%20rate%20and%20radar%20reflectivity.%20We%20also%20find%20the%20precipitation%20properties%20inferred%20from%20radar%20and%20lidar%20data%20compare%20well%20with%20direct%20measurements%20from%20the%20aircraft%2C%20and%20the%20precipitation%20tends%20to%20be%20very%20light.%20We%20study%20how%20precipitation%20properties%20vary%20vertically%2C%20and%20find%20that%20as%20one%20gets%20closer%20to%20the%20surface%2C%20there%20is%20a%20decrease%20in%20precipitation%20droplet%20number%20and%20water%2C%20while%20there%20is%20an%20increase%20in%20the%20average%20size%20of%20droplets.%20We%20also%20find%20that%20rain%20rate%20depends%20on%20how%20thick%20the%20clouds%20are%20and%20the%20number%20of%20aerosols%2C%20consistent%20with%20theoretical%20expectations.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Liquid%5Cu2010phase%20precipitation%20retrievals%20show%20good%20agreement%20with%20in%20situ%20observations%20and%20feature%20the%20prevalence%20of%20light%20rain%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Reflectivity%20to%20rain%20rate%20relationships%20are%20developed%2C%20showing%20vertical%20dependence%20and%20sensitivity%20to%20the%20intermediate%5Cu2010sized%20drops%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20The%20below%5Cu2010cloud%20precipitation%20phase%20with%20radar%20reflectivity%20%3E0%5Cu00a0dBZ%20is%20mostly%20ice%2C%20while%20radar%20reflectivity%20%3C%5Cu221210%5Cu00a0dBZ%20is%20mostly%20liquid%22%2C%22date%22%3A%222024-03-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JD039831%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JD039831%22%2C%22collections%22%3A%5B%22K6F5CX26%22%5D%2C%22dateModified%22%3A%222024-04-09T05%3A34%3A25Z%22%7D%7D%2C%7B%22key%22%3A%22JWY4QMQ6%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Ferracci%20et%20al.%22%2C%22parsedDate%22%3A%222024-03-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFerracci%2C%20V.%2C%20Weber%2C%20J.%2C%20Bolas%2C%20C.%20G.%2C%20Robinson%2C%20A.%20D.%2C%20Tummon%2C%20F.%2C%20Rodr%26%23xED%3Bguez-Ros%2C%20P.%2C%20Cort%26%23xE9%3Bs-Greus%2C%20P.%2C%20Baccarini%2C%20A.%2C%20Jones%2C%20R.%20L.%2C%20Gal%26%23xED%3B%2C%20M.%2C%20Sim%26%23xF3%3B%2C%20R.%2C%20Schmale%2C%20J.%2C%20%26amp%3B%20Harris%2C%20Neil.%20R.%20P.%20%282024%29.%20Atmospheric%20isoprene%20measurements%20reveal%20larger-than-expected%20Southern%20Ocean%20emissions.%20%3Ci%3ENature%20Communications%3C%5C%2Fi%3E%2C%20%3Ci%3E15%3C%5C%2Fi%3E%281%29%2C%202571.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-024-46744-4%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41467-024-46744-4%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atmospheric%20isoprene%20measurements%20reveal%20larger-than-expected%20Southern%20Ocean%20emissions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Valerio%22%2C%22lastName%22%3A%22Ferracci%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22James%22%2C%22lastName%22%3A%22Weber%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Conor%20G.%22%2C%22lastName%22%3A%22Bolas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%20D.%22%2C%22lastName%22%3A%22Robinson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fiona%22%2C%22lastName%22%3A%22Tummon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pablo%22%2C%22lastName%22%3A%22Rodr%5Cu00edguez-Ros%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Pau%22%2C%22lastName%22%3A%22Cort%5Cu00e9s-Greus%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrea%22%2C%22lastName%22%3A%22Baccarini%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Roderic%20L.%22%2C%22lastName%22%3A%22Jones%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Mart%5Cu00ed%22%2C%22lastName%22%3A%22Gal%5Cu00ed%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rafel%22%2C%22lastName%22%3A%22Sim%5Cu00f3%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julia%22%2C%22lastName%22%3A%22Schmale%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Neil.%20R.%20P.%22%2C%22lastName%22%3A%22Harris%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Isoprene%20is%20a%20key%20trace%20component%20of%20the%20atmosphere%20emitted%20by%20vegetation%20and%20other%20organisms.%20It%20is%20highly%20reactive%20and%20can%20impact%20atmospheric%20composition%20and%20climate%20by%20affecting%20the%20greenhouse%20gases%20ozone%20and%20methane%20and%20secondary%20organic%20aerosol%20formation.%20Marine%20fluxes%20are%20poorly%20constrained%20due%20to%20the%20paucity%20of%20long-term%20measurements%3B%20this%20in%20turn%20limits%20our%20understanding%20of%20isoprene%20cycling%20in%20the%20ocean.%20Here%20we%20present%20the%20analysis%20of%20isoprene%20concentrations%20in%20the%20atmosphere%20measured%20across%20the%20Southern%20Ocean%20over%204%20months%20in%20the%20summertime.%20Some%20of%20the%20highest%20concentrations%20%28%5Cu2009%3E500%20ppt%29%20originated%20from%20the%20marginal%20ice%20zone%20in%20the%20Ross%20and%20Amundsen%20seas%2C%20indicating%20the%20marginal%20ice%20zone%20is%20a%20significant%20source%20of%20isoprene%20at%20high%20latitudes.%20Using%20the%20United%20Kingdom%20Earth%20System%20Model%20we%20show%20that%20current%20estimates%20of%20sea-to-air%20isoprene%20fluxes%20underestimate%20observed%20isoprene%20by%20a%20factor%20%3E20.%20A%20daytime%20source%20of%20isoprene%20is%20required%20to%20reconcile%20models%20with%20observations.%20The%20model%20presented%20here%20suggests%20such%20an%20increase%20in%20isoprene%20emissions%20would%20lead%20to%20%3E8%25%20decrease%20in%20the%20hydroxyl%20radical%20in%20regions%20of%20the%20Southern%20Ocean%2C%20with%20implications%20for%20our%20understanding%20of%20atmospheric%20oxidation%20and%20composition%20in%20remote%20environments%2C%20often%20used%20as%20proxies%20for%20the%20pre-industrial%20atmosphere.%22%2C%22date%22%3A%222024-03-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41467-024-46744-4%22%2C%22ISSN%22%3A%222041-1723%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41467-024-46744-4%22%2C%22collections%22%3A%5B%22K6F5CX26%22%5D%2C%22dateModified%22%3A%222024-04-09T05%3A34%3A11Z%22%7D%7D%2C%7B%22key%22%3A%22VKZYQZ3Q%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Alinejadtabrizi%20et%20al.%22%2C%22parsedDate%22%3A%222024-03-22%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EAlinejadtabrizi%2C%20T.%2C%20Lang%2C%20F.%2C%20Huang%2C%20Y.%2C%20Ackermann%2C%20L.%2C%20Keywood%2C%20M.%2C%20Ayers%2C%20G.%2C%20Krummel%2C%20P.%2C%20Humphries%2C%20R.%2C%20Williams%2C%20A.%20G.%2C%20Siems%2C%20S.%20T.%2C%20%26amp%3B%20Manton%2C%20M.%20%282024%29.%20Wet%20deposition%20in%20shallow%20convection%20over%20the%20Southern%20Ocean.%20%3Ci%3ENpj%20Climate%20and%20Atmospheric%20Science%3C%5C%2Fi%3E%2C%20%3Ci%3E7%3C%5C%2Fi%3E%281%29%2C%2076.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41612-024-00625-1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1038%5C%2Fs41612-024-00625-1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Wet%20deposition%20in%20shallow%20convection%20over%20the%20Southern%20Ocean%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Alinejadtabrizi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Lang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Ackermann%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Keywood%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22G.%22%2C%22lastName%22%3A%22Ayers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%22%2C%22lastName%22%3A%22Krummel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Humphries%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20G.%22%2C%22lastName%22%3A%22Williams%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20T.%22%2C%22lastName%22%3A%22Siems%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Manton%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Southern%20Ocean%20%28SO%29%20air%20is%20amongst%20the%20most%20pristine%20on%20Earth%2C%20particularly%20during%20winter.%20Historically%2C%20there%20has%20been%20a%20focus%20on%20biogenic%20sources%20as%20an%20explanation%20for%20the%20seasonal%20cycle%20in%20cloud%20condensation%20nuclei%20concentrations%20%28%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20is%20also%20sensitive%20to%20the%20strength%20of%20sink%20terms%2C%20although%20the%20magnitude%20of%20this%20term%20varies%20considerably.%20Wet%20deposition%2C%20a%20process%20encompassing%20coalescence%20scavenging%20%28drizzle%20formation%29%2C%20is%20one%20such%20process%20that%20may%20be%20especially%20relevant%20over%20the%20SO.%20Using%20a%20boundary%20layer%20cloud%20climatology%2C%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20precipitation%20observations%20from%20Kennaook%5C%2FCape%20Grim%20Observatory%20%28CGO%29%2C%20we%20find%20a%20statistically%20significant%20difference%20in%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20between%20when%20the%20upwind%20meteorology%20is%20dominated%20by%20open%20mesoscale%20cellular%20convection%20%28MCC%29%20and%20closed%20MCC.%20When%20open%20MCC%20is%20dominant%2C%20a%20lower%20median%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2869%5Cu2009cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22123%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20is%20found%20compared%20to%20when%20closed%20MCC%20%2889%5Cu2009cm%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22123%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20is%20dominant.%20Open%20MCC%20is%20found%20to%20precipitate%20more%20heavily%20%281.72%5Cu2009mm%20day%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20and%20more%20frequently%20%2816.7%25%20of%20the%20time%29%20than%20closed%20MCC%20%280.29%5Cu2009mm%20day%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu22121%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%204.5%25%29.%20These%20relationships%20are%20observed%20to%20hold%20across%20the%20seasonal%20cycle%20with%20maximum%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20minimum%20precipitation%20observed%20during%20Austral%20summer%20%28DJF%29.%20Furthermore%2C%20the%20observed%20MCC%20morphology%20strongly%20depends%20on%20meteorological%20conditions.%20The%20relationship%20between%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20precipitation%20can%20be%20further%20examined%20across%20a%20diurnal%20cycle%20during%20the%20summer%20season.%20Although%20there%20was%20again%20a%20negative%20relationship%20between%20precipitation%20and%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20the%20precipitation%20cycle%20was%20out%20of%20phase%20with%20the%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20N%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20CCN%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20cycle%2C%20leading%20it%20by%20~3%5Cu2009hours%2C%20suggesting%20other%20factors%2C%20specifically%20the%20meteorology%20play%20a%20primary%20role%20in%20influencing%20precipitation.%22%2C%22date%22%3A%222024-03-22%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1038%5C%2Fs41612-024-00625-1%22%2C%22ISSN%22%3A%222397-3722%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.nature.com%5C%2Farticles%5C%2Fs41612-024-00625-1%22%2C%22collections%22%3A%5B%22K6F5CX26%22%5D%2C%22dateModified%22%3A%222024-04-09T05%3A32%3A31Z%22%7D%7D%2C%7B%22key%22%3A%22L22D4UK9%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22C%5Cu00e2mara%20et%20al.%22%2C%22parsedDate%22%3A%222024-03-18%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EC%26%23xE2%3Bmara%2C%20P.%20E.%20A.%20S.%2C%20Stech%2C%20M.%2C%20Convey%2C%20P.%2C%20%26%23x160%3Bantl-Temkiv%2C%20T.%2C%20Pinto%2C%20O.%20H.%20B.%2C%20Bones%2C%20F.%20L.%20V.%2C%20Lopes%2C%20F.%20A.%20C.%2C%20Costa%20Rodrigues%2C%20L.%20A.%20D.%2C%20Carvalho-Silva%2C%20M.%2C%20%26amp%3B%20Rosa%2C%20L.%20H.%20%282024%29.%20Assessing%20aerial%20biodiversity%20over%20Keller%20Peninsula%2C%20King%20George%20Island%2C%20Maritime%20Antarctica%2C%20using%20DNA%20metabarcoding.%20%3Ci%3EAntarctic%20Science%3C%5C%2Fi%3E%2C%201%26%23x2013%3B10.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2FS095410202400004X%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1017%5C%2FS095410202400004X%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Assessing%20aerial%20biodiversity%20over%20Keller%20Peninsula%2C%20King%20George%20Island%2C%20Maritime%20Antarctica%2C%20using%20DNA%20metabarcoding%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paulo%20E.A.S.%22%2C%22lastName%22%3A%22C%5Cu00e2mara%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Stech%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Peter%22%2C%22lastName%22%3A%22Convey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tina%22%2C%22lastName%22%3A%22%5Cu0160antl-Temkiv%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Otavio%20Henrique%20Bezerra%22%2C%22lastName%22%3A%22Pinto%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F%5Cu00e1bio%20Leal%20Viana%22%2C%22lastName%22%3A%22Bones%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Fabyano%20Alvares%20Cardoso%22%2C%22lastName%22%3A%22Lopes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luiz%20Ant%5Cu00f4nio%20Da%22%2C%22lastName%22%3A%22Costa%20Rodrigues%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Micheline%22%2C%22lastName%22%3A%22Carvalho-Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Luiz%20Henrique%22%2C%22lastName%22%3A%22Rosa%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Antarctic%20ice-free%20areas%20are%20dominated%20by%20wind-dispersed%20organisms.%20However%2C%20which%20organisms%20arrive%20and%20circulate%20in%20Antarctica%20and%20how%20remain%20poorly%20understood.%20Due%20to%20their%20proximity%20to%20South%20America%20and%20less%20extreme%20conditions%2C%20the%20South%20Shetland%20Islands%20are%20likely%20to%20receive%20higher%20diaspore%20numbers.%20One%20possible%20consequence%20of%20climate%20change%20is%20that%20newcomers%20will%20be%20able%20to%20colonize%20ice-free%20areas%2C%20altering%20community%20compositions%20and%20impacting%20the%20native%20biota.%20We%20used%20DNA%20metabarcoding%20to%20identify%20non-fungal%20eukaryotic%20DNA%20present%20in%20the%20air%20that%20could%20potentially%20reach%20and%20circulate%20in%20Antarctica.%20Air%20was%20sampled%20near%20the%20Brazilian%20Comandante%20Ferraz%20Antarctic%20Station%20on%20King%20George%20Island%20between%20December%202019%20and%20January%202020.%20Sequences%20representing%20a%20total%20of%2035%20taxa%20from%2010%20phyla%20and%203%20kingdoms%20were%20assigned%3A%20Chromista%20%28Ciliophora%2C%20Cercozoa%2C%20Haptophyta%20and%20Ochrophyta%29%2C%20Plantae%20%28Chlorophyta%2C%20Bryophyta%20and%20Magnoliophyta%29%20and%20Animalia%20%28Mollusca%2C%20Arthropoda%20and%20Chordata%29.%20The%20most%20diverse%20group%20were%20the%20plants%20%2826%20taxa%29%2C%20followed%20by%20Chromista%20%286%20taxa%29.%20The%20most%20abundant%20sequences%20represented%20the%20green%20algae%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Chlamydomonas%20nivalis%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20.%20The%20two%20angiosperm%20sequences%20represent%20exotic%20taxa%3B%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20Folsomia%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20is%20also%20exotic%20and%20was%20recorded%20only%20on%20Deception%20Island.%20Metabarcoding%20revealed%20the%20presence%20of%20previously%20undocumented%20airborne%20diversity%2C%20suggesting%20that%20the%20Antarctic%20airspora%20includes%20propagules%20of%20both%20local%20and%20distant%20origin.%22%2C%22date%22%3A%222024-03-18%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1017%5C%2FS095410202400004X%22%2C%22ISSN%22%3A%220954-1020%2C%201365-2079%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.cambridge.org%5C%2Fcore%5C%2Fproduct%5C%2Fidentifier%5C%2FS095410202400004X%5C%2Ftype%5C%2Fjournal_article%22%2C%22collections%22%3A%5B%22K6F5CX26%22%5D%2C%22dateModified%22%3A%222024-04-09T05%3A33%3A54Z%22%7D%7D%2C%7B%22key%22%3A%22BWLP3F6C%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Bertrand%20et%20al.%22%2C%22parsedDate%22%3A%222024-03-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBertrand%2C%20L.%2C%20Kay%2C%20J.%20E.%2C%20Haynes%2C%20J.%2C%20%26amp%3B%20De%20Boer%2C%20G.%20%282024%29.%20A%20global%20gridded%20dataset%20for%20cloud%20vertical%20structure%20from%20combined%20CloudSat%20and%20CALIPSO%20observations.%20%3Ci%3EEarth%20System%20Science%20Data%3C%5C%2Fi%3E%2C%20%3Ci%3E16%3C%5C%2Fi%3E%283%29%2C%201301%26%23x2013%3B1316.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fessd-16-1301-2024%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Fessd-16-1301-2024%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20global%20gridded%20dataset%20for%20cloud%20vertical%20structure%20from%20combined%20CloudSat%20and%20CALIPSO%20observations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Leah%22%2C%22lastName%22%3A%22Bertrand%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennifer%20E.%22%2C%22lastName%22%3A%22Kay%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22John%22%2C%22lastName%22%3A%22Haynes%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gijs%22%2C%22lastName%22%3A%22De%20Boer%22%7D%5D%2C%22abstractNote%22%3A%22Abstract.%20The%20vertical%20structure%20of%20clouds%20has%20a%20profound%20effect%20on%20the%20global%20energy%20budget%2C%20the%20global%20circulation%2C%20and%20the%20atmospheric%20hydrological%20cycle.%20The%20CloudSat%20and%20Cloud-Aerosol%20Lidar%20and%20Infrared%20Pathfinder%20Satellite%20Observations%20%28CALIPSO%29%20missions%20have%20taken%20complementary%2C%20colocated%20observations%20of%20cloud%20vertical%20structure%20for%20over%20a%20decade.%20However%2C%20no%20globally%20gridded%20dataset%20is%20available%20to%20the%20public%20for%20the%20full%20length%20of%20this%20unique%20combined%20data%20record.%20Here%20we%20present%20the%203S-GEOPROF-COMB%20product%20%28Bertrand%20et%20al.%202023%2C%20https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5281%5C%2Fzenodo.8057791%29%2C%20a%20globally%20gridded%20%28level%203S%29%20community%20data%20product%20summarizing%20geometrical%20profiles%20%28GEOPROF%29%20of%20hydrometeor%20occurrence%20from%20combined%20%28COMB%29%20CloudSat%20and%20CALIPSO%20data.%20Our%20product%20is%20calculated%20from%20the%20latest%20release%20%28R05%29%20of%20per-orbit%20%28level-2%29%20combined%20cloud%20mask%20profiles.%20We%20process%20a%20set%20of%20cloud%20cover%2C%20vertical%20cloud%20fraction%2C%20and%20sampling%20variables%20at%202.5%2C%205%2C%20and%2010%5Cu00b0%20spatial%20resolutions%20and%20monthly%20and%20seasonal%20temporal%20resolutions.%20We%20address%20the%202011%20reduction%20in%20CloudSat%20data%20collection%20with%20Daylight-Only%20Operations%20%28DO-Op%29%20mode%20by%20subsampling%20pre-2011%20data%20to%20mimic%20DO-Op%20collection%20patterns%2C%20thereby%20allowing%20users%20to%20evaluate%20the%20impact%20of%20the%20reduced%20sampling%20on%20their%20analyses.%20We%20evaluate%20our%20data%20product%20against%20CloudSat-only%20and%20CALIPSO-only%20global-gridded%20data%20products%20as%20well%20as%20four%20comparable%20surface-based%20sites%2C%20underscoring%20the%20added%20value%20of%20the%20combined%20product.%20Interest%20in%20the%20product%20is%20anticipated%20for%20the%20study%20of%20cloud%20processes%2C%20cloud%5Cu2013climate%20interactions%2C%20and%20as%20a%20candidate%20baseline%20climate%20data%20record%20for%20comparison%20to%20follow-up%20satellite%20missions%2C%20among%20other%20uses.%22%2C%22date%22%3A%222024-03-14%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.5194%5C%2Fessd-16-1301-2024%22%2C%22ISSN%22%3A%221866-3516%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fessd.copernicus.org%5C%2Farticles%5C%2F16%5C%2F1301%5C%2F2024%5C%2F%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-08T22%3A12%3A10Z%22%7D%7D%2C%7B%22key%22%3A%227KFATXJD%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Revell%20et%20al.%22%2C%22parsedDate%22%3A%222024-02-26%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ERevell%2C%20L.%20E.%2C%20Edkins%2C%20N.%20J.%2C%20Venugopal%2C%20A.%20U.%2C%20Bhatti%2C%20Y.%20A.%2C%20Kozyniak%2C%20K.%20M.%2C%20Davy%2C%20P.%20K.%2C%20Kuschel%2C%20G.%2C%20Somervell%2C%20E.%2C%20Hardacre%2C%20C.%2C%20%26amp%3B%20Coulson%2C%20G.%20%282024%29.%20Marine%20aerosol%20in%20Aotearoa%20New%20Zealand%3A%20implications%20for%20air%20quality%2C%20climate%20change%20and%20public%20health.%20%3Ci%3EJournal%20of%20the%20Royal%20Society%20of%20New%20Zealand%3C%5C%2Fi%3E%2C%201%26%23x2013%3B23.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1080%5C%2F03036758.2024.2319753%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1080%5C%2F03036758.2024.2319753%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Marine%20aerosol%20in%20Aotearoa%20New%20Zealand%3A%20implications%20for%20air%20quality%2C%20climate%20change%20and%20public%20health%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Laura%20E.%22%2C%22lastName%22%3A%22Revell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nicholas%20J.%22%2C%22lastName%22%3A%22Edkins%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Abhijith%20U.%22%2C%22lastName%22%3A%22Venugopal%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Yusuf%20A.%22%2C%22lastName%22%3A%22Bhatti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Kathleen%20M.%22%2C%22lastName%22%3A%22Kozyniak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Perry%20K.%22%2C%22lastName%22%3A%22Davy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Gerda%22%2C%22lastName%22%3A%22Kuschel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Elizabeth%22%2C%22lastName%22%3A%22Somervell%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Catherine%22%2C%22lastName%22%3A%22Hardacre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guy%22%2C%22lastName%22%3A%22Coulson%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222024-02-26%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1080%5C%2F03036758.2024.2319753%22%2C%22ISSN%22%3A%220303-6758%2C%201175-8899%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.tandfonline.com%5C%2Fdoi%5C%2Ffull%5C%2F10.1080%5C%2F03036758.2024.2319753%22%2C%22collections%22%3A%5B%22K6F5CX26%22%5D%2C%22dateModified%22%3A%222024-04-09T05%3A35%3A39Z%22%7D%7D%2C%7B%22key%22%3A%22MJ7WVAKG%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hofer%20et%20al.%22%2C%22parsedDate%22%3A%222024-01-29%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHofer%2C%20J.%2C%20Seifert%2C%20P.%2C%20Liley%2C%20J.%20B.%2C%20Radenz%2C%20M.%2C%20Uchino%2C%20O.%2C%20Morino%2C%20I.%2C%20Sakai%2C%20T.%2C%20Nagai%2C%20T.%2C%20%26amp%3B%20Ansmann%2C%20A.%20%282024%29.%20Aerosol-related%20effects%20on%20the%20occurrence%20of%20heterogeneous%20ice%20formation%20over%20Lauder%2C%20New%20Zealand%20%26%23x2215%3B%20Aotearoa.%20%3Ci%3EAtmospheric%20Chemistry%20and%20Physics%3C%5C%2Fi%3E%2C%20%3Ci%3E24%3C%5C%2Fi%3E%282%29%2C%201265%26%23x2013%3B1280.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Facp-24-1265-2024%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.5194%5C%2Facp-24-1265-2024%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Aerosol-related%20effects%20on%20the%20occurrence%20of%20heterogeneous%20ice%20formation%20over%20Lauder%2C%20New%20Zealand%20%5Cu2215%20Aotearoa%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julian%22%2C%22lastName%22%3A%22Hofer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Patric%22%2C%22lastName%22%3A%22Seifert%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20Ben%22%2C%22lastName%22%3A%22Liley%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Martin%22%2C%22lastName%22%3A%22Radenz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Osamu%22%2C%22lastName%22%3A%22Uchino%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Isamu%22%2C%22lastName%22%3A%22Morino%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tetsu%22%2C%22lastName%22%3A%22Sakai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Tomohiro%22%2C%22lastName%22%3A%22Nagai%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Albert%22%2C%22lastName%22%3A%22Ansmann%22%7D%5D%2C%22abstractNote%22%3A%22Abstract.%20The%20presented%20study%20investigates%20the%20efficiency%20of%20heterogeneous%20ice%20formation%20in%20natural%20clouds%20over%20Lauder%2C%20New%20Zealand%5Cu2009%5C%2F%5Cu2009Aotearoa.%20Aerosol%20conditions%20in%20the%20middle%20troposphere%20above%20Lauder%20are%20subject%20to%20huge%20contrasts.%20Clean%2C%20pristine%20air%5Cu00a0masses%20from%20Antarctica%20and%20the%20Southern%20Ocean%20arrive%20under%20southerly%20flow%20conditions%2C%20while%20high%20aerosol%20loads%20can%20occur%20when%20air%20masses%20are%20advected%20from%20nearby%20Australia.%20This%20study%20assesses%20how%20these%20contrasts%20in%20aerosol%20load%20affect%20the%20ice%20formation%20efficiency%20in%20stratiform%20midlevel%20clouds%20in%20the%20heterogeneous%20freezing%20range%20%28%5Cu221240%5Cu00a0to%200%5Cu2009%5Cu2218C%29.%20For%20this%20purpose%2C%20an%2011-year%20dataset%20was%20analyzed%20from%20a%20dual-wavelength%20polarization%20lidar%20system%20operated%20by%20National%20Institute%20of%20Water%20and%20Atmospheric%20Research%20%28NIWA%29%2C%20Taihoro%20Nukurangi%2C%20at%20Lauder%20in%20collaboration%20with%20the%20National%20Institute%20for%20Environmental%20Studies%20in%20Japan%20and%20the%20Meteorological%20Research%20Institute%20of%20the%20Japan%20Meteorological%20Agency.%20These%20data%20were%20used%20to%20investigate%20the%20efficiency%20of%20heterogeneous%20ice%20formation%20in%20clouds%20over%20the%20site%20as%20a%20function%20of%20cloud-top%20temperature%20as%20in%20previous%20studies%20at%20other%20locations.%20The%20Lauder%20cloud%20dataset%20was%20put%20into%20context%20with%20lidar%20studies%20from%20contrasting%20regions%20such%20as%20Germany%20and%20southern%20Chile.%20The%20ice%20formation%20efficiency%20found%20at%20Lauder%20is%20lower%20than%20in%20polluted%20midlatitudes%20%28i.e.%2C%20Germany%29%20but%20higher%20than%2C%20for%20example%2C%20in%20southern%20Chile.%20Both%20Lauder%20and%20southern%20Chile%20are%20subject%20to%20generally%20low%20free-tropospheric%20aerosol%20loads%2C%20which%20suggests%20that%20the%20low%20ice%20formation%20efficiency%20at%20these%20two%20sites%20is%20related%20to%20low%20ice-nucleating-particle%20%28INP%29%20concentrations.%20However%2C%20Lauder%20sees%20episodes%20of%20continental%20aerosol%2C%20more%20than%20southern%20Chile%20does%2C%20which%20seems%20to%20lead%20to%20the%20moderately%20increased%20ice%20formation%20efficiency.%20Trajectory-based%20tools%20and%20aerosol%20model%20reanalyses%20are%20used%20to%20relate%20this%20cloud%20dataset%20to%20the%20aerosol%20load%20and%20the%20air%20mass%20sources.%20Both%20analyses%20point%20clearly%20to%20higher%20ice%20formation%20efficiency%20for%20clouds%20which%20are%20more%20strongly%20influenced%20by%20continental%20aerosol%20and%20to%20lower%20ice%20formation%20efficiency%20for%20clouds%20which%20are%20more%20influenced%20by%20Antarctic%5C%2Fmarine%20aerosol%20and%20air%20masses.%22%2C%22date%22%3A%222024-01-29%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.5194%5C%2Facp-24-1265-2024%22%2C%22ISSN%22%3A%221680-7324%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Facp.copernicus.org%5C%2Farticles%5C%2F24%5C%2F1265%5C%2F2024%5C%2F%22%2C%22collections%22%3A%5B%5D%2C%22dateModified%22%3A%222024-07-08T22%3A12%3A47Z%22%7D%7D%2C%7B%22key%22%3A%22ITB5D5IG%22%2C%22library%22%3A%7B%22id%22%3A5228893%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lapere%20et%20al.%22%2C%22parsedDate%22%3A%222024-01-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELapere%2C%20R.%2C%20Thomas%2C%20J.%20L.%2C%20Favier%2C%20V.%2C%20Angot%2C%20H.%2C%20Asplund%2C%20J.%2C%20Ekman%2C%20A.%20M.%20L.%2C%20Marelle%2C%20L.%2C%20Raut%2C%20J.%2C%20Da%20Silva%2C%20A.%2C%20Wille%2C%20J.%20D.%2C%20%26amp%3B%20Zieger%2C%20P.%20%282024%29.%20Polar%20Aerosol%20Atmospheric%20Rivers%3A%20Detection%2C%20Characteristics%2C%20and%20Potential%20Applications.%20%3Ci%3EJournal%20of%20Geophysical%20Research%3A%20Atmospheres%3C%5C%2Fi%3E%2C%20%3Ci%3E129%3C%5C%2Fi%3E%282%29%2C%20e2023JD039606.%20%3Ca%20class%3D%27zp-DOIURL%27%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD039606%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2023JD039606%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Polar%20Aerosol%20Atmospheric%20Rivers%3A%20Detection%2C%20Characteristics%2C%20and%20Potential%20Applications%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R%5Cu00e9my%22%2C%22lastName%22%3A%22Lapere%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jennie%20L.%22%2C%22lastName%22%3A%22Thomas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Vincent%22%2C%22lastName%22%3A%22Favier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H%5Cu00e9l%5Cu00e8ne%22%2C%22lastName%22%3A%22Angot%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Julia%22%2C%22lastName%22%3A%22Asplund%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Annica%20M.%20L.%22%2C%22lastName%22%3A%22Ekman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Louis%22%2C%22lastName%22%3A%22Marelle%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jean%5Cu2010Christophe%22%2C%22lastName%22%3A%22Raut%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Anderson%22%2C%22lastName%22%3A%22Da%20Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jonathan%20D.%22%2C%22lastName%22%3A%22Wille%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Zieger%22%7D%5D%2C%22abstractNote%22%3A%22Abstract%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Aerosols%20play%20a%20key%20role%20in%20polar%20climate%2C%20and%20are%20affected%20by%20long%5Cu2010range%20transport%20from%20the%20mid%5Cu2010latitudes%2C%20both%20in%20the%20Arctic%20and%20Antarctic.%20This%20work%20investigates%20poleward%20extreme%20transport%20events%20of%20aerosols%2C%20referred%20to%20as%20polar%20aerosol%20atmospheric%20rivers%20%28p%5Cu2010AAR%29%2C%20leveraging%20the%20concept%20of%20atmospheric%20rivers%20%28AR%29%20which%20signal%20extreme%20transport%20of%20moisture.%20Using%20reanalysis%20data%2C%20we%20build%20a%20detection%20catalog%20of%20p%5Cu2010AARs%20for%20black%20carbon%2C%20dust%2C%20sea%20salt%20and%20organic%20carbon%20aerosols%2C%20for%20the%20period%201980%5Cu20132022.%20First%2C%20we%20describe%20the%20detection%20algorithm%2C%20discuss%20its%20sensitivity%2C%20and%20evaluate%20its%20validity.%20Then%2C%20we%20present%20several%20extreme%20transport%20case%20studies%2C%20in%20the%20Arctic%20and%20in%20the%20Antarctic%2C%20illustrating%20the%20complementarity%20between%20ARs%20and%20p%5Cu2010AARs.%20Despite%20similarities%20in%20transport%20pathways%20during%20co%5Cu2010occurring%20AR%5C%2Fp%5Cu2010AAR%20events%2C%20vertical%20profiles%20differ%20depending%20on%20the%20species%2C%20and%20large%5Cu2010scale%20transport%20patterns%20show%20that%20moisture%20and%20aerosols%20do%20not%20necessarily%20originate%20from%20the%20same%20areas.%20The%20complementarity%20between%20AR%20and%20p%5Cu2010AAR%20is%20also%20evidenced%20by%20their%20long%5Cu2010term%20characteristics%20in%20terms%20of%20spatial%20distribution%2C%20seasonality%20and%20trends.%20p%5Cu2010AAR%20detection%2C%20as%20a%20complement%20to%20AR%2C%20can%20have%20several%20important%20applications%20for%20better%20understanding%20polar%20climate%20and%20its%20connections%20to%20the%20mid%5Cu2010latitudes.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Plain%20Language%20Summary%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20The%20extreme%20transport%20of%20aerosol%5Cu2010containing%20air%20masses%2C%20from%20the%20mid%5Cu2010latitudes%20to%20the%20polar%20regions%2C%20can%20be%20characterized%20and%20quantified%20by%20leveraging%20polar%20Aerosol%20Atmospheric%20Rivers%20%28p%5Cu2010AARs%29.%20This%20is%20similar%20to%20the%20Atmospheric%20Rivers%20%28ARs%29%20which%20carry%20large%20amounts%20of%20water%20to%20the%20poles%20and%20affect%20the%20overall%20stability%20of%20polar%20ecosystems.%20In%20this%20work%2C%20we%20establish%20a%20detection%20algorithm%20for%20p%5Cu2010AARs%20and%20evaluate%20it%20for%20different%20well%5Cu2010known%20aerosol%20intrusions%20or%20AR%20events.%20The%20areas%20most%20affected%20by%20p%5Cu2010AARs%20are%20described%2C%20their%20trends%20are%20investigated%20and%20we%20discuss%20the%20potential%20applications%20of%20p%5Cu2010AAR%20detection%20for%20a%20better%20understanding%20of%20polar%20climate.%20%5Cn%20%20%20%20%20%20%20%20%20%20%2C%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20Key%20Points%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20A%20catalog%20of%20polar%20aerosol%20atmospheric%20rivers%20%28p%5Cu2010AAR%29%20is%20provided%20for%201980%5Cu20132022%20by%20adapting%20an%20atmospheric%20river%20%28AR%29%20detection%20scheme%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Important%20p%5Cu2010AAR%20events%2C%20representing%20rapid%20poleward%20transport%20of%20aerosol%5Cu2010enriched%20air%20masses%2C%20are%20presented%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Combining%20AR%20and%20p%5Cu2010AAR%20can%20improve%20our%20understanding%20of%20the%20links%20between%20mid%5Cu2010%20and%20polar%5Cu2010latitudes%2C%20in%20the%20past%2C%20present%20and%20future%20climate%22%2C%22date%22%3A%222024-01-28%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1029%5C%2F2023JD039606%22%2C%22ISSN%22%3A%222169-897X%2C%202169-8996%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fagupubs.onlinelibrary.wiley.com%5C%2Fdoi%5C%2F10.1029%5C%2F2023JD039606%22%2C%22collections%22%3A%5B%22K6F5CX26%22%5D%2C%22dateModified%22%3A%222024-04-09T05%3A34%3A37Z%22%7D%7D%5D%7D
Burke, G., Wongpan, P., Lannuzel, D., & Hayashida, H. (2024). Data collation for climate-cooling gas dimethylsulfide in Antarctic snow, sea ice and underlying seawater. Scientific Data, 11(1), 1185. https://doi.org/10.1038/s41597-024-04038-w
Chen, L., Zhang, L., She, Y., Zeng, Z., Zheng, Y., Tian, B., Zhang, W., Liu, Z., & Ding, M. (2024). Measurement report: Analysis of aerosol optical depth variation at Zhongshan Station in Antarctica. EGUsphere, 1–23. https://doi.org/10.5194/egusphere-2024-798
Xia, Z., & McFarquhar, G. M. (2024). Dependence of Cloud Macrophysical Properties and Phase Distributions on Environmental Conditions Over the North Atlantic and Southern Ocean: Results From COMBLE and MARCUS. Journal of Geophysical Research: Atmospheres, 129(12), e2023JD039869. https://doi.org/10.1029/2023JD039869
Mace, G. G., Benson, S., Sterner, E., Protat, A., Humphries, R., & Hallar, A. G. (2024). The Association Between Cloud Droplet Number over the Summer Southern Ocean and Air Mass History. Journal of Geophysical Research: Atmospheres, 129(12), e2023JD040673. https://doi.org/10.1029/2023JD040673
Dietel, B., Sourdeval, O., & Hoose, C. (2024). Characterisation of low-base and mid-base clouds and their thermodynamic phase over the Southern Ocean and Arctic marine regions. Atmospheric Chemistry and Physics, 24(12), 7359–7383. https://doi.org/10.5194/acp-24-7359-2024
Radenz, M., Engelmann, R., Henning, S., Schmithüsen, H., Baars, H., Frey, M. M., Weller, R., Bühl, J., Jimenez, C., Roschke, J., Muser, L. O., Wullenweber, N., Zeppenfeld, S., Griesche, H., Wandinger, U., & Seifert, P. (2024). Ground-based Remote Sensing of Aerosol, Clouds, Dynamics, and Precipitation in Antarctica —First results from the one-year COALA campaign at Neumayer Station III in 2023. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-22-0285.1
Scarci, K., Scott, R. C., Ghiz, M. L., Vogelmann, A. M., & Lubin, D. (2024). Broadband and filter radiometers at Ross Island, Antarctica: detection of cloud ice phase versus liquid water influences on shortwave and longwave radiation. Atmospheric Chemistry and Physics, 24(11), 6681–6697. https://doi.org/10.5194/acp-24-6681-2024
Knight, C. L., Mallet, M. D., Alexander, S. P., Fraser, A. D., Protat, A., & McFarquhar, G. M. (2024). Cloud Properties and Boundary Layer Stability Above Southern Ocean Sea Ice and Coastal Antarctica. Journal of Geophysical Research: Atmospheres, 129(10), e2022JD038280. https://doi.org/10.1029/2022JD038280
Bazantay, C., Jourdan, O., Mioche, G., Uitz, J., Dziduch, A., Delanoë, J., Cazenave, Q., Sauzède, R., Protat, A., & Sellegri, K. (2024). Relating Ocean Biogeochemistry and Low‐Level Cloud Properties Over the Southern Oceans. Geophysical Research Letters, 51(10), e2024GL108309. https://doi.org/10.1029/2024GL108309
Niu, Q., McFarquhar, G. M., Marchand, R., Theisen, A., Cavallo, S. M., Flynn, C., DeMott, P. J., McCluskey, C. S., Humphries, R. S., & Hill, T. C. J. (2024). 62°S Witnesses the Transition of Boundary Layer Marine Aerosol Pattern Over the Southern Ocean (50°S–68°S, 63°E–150°E) During the Spring and Summer: Results From MARCUS (I). Journal of Geophysical Research: Atmospheres, 129(9), e2023JD040396. https://doi.org/10.1029/2023JD040396
Cesana, G. V., Ackerman, A. S., Fridlind, A. M., Silber, I., Del Genio, A. D., Zelinka, M. D., Chepfer, H., Khadir, T., & Roehrig, R. (2024). Observational constraint on a feedback from supercooled clouds reduces projected warming uncertainty. Communications Earth & Environment, 5(1), 181. https://doi.org/10.1038/s43247-024-01339-1
Reid, K. J., Arblaster, J. M., Alexander, L. V., & Siems, S. T. (2024). Spurious Trends in High Latitude Southern Hemisphere Precipitation Observations. Geophysical Research Letters, 51(6), e2023GL106994. https://doi.org/10.1029/2023GL106994
Kang, L., Marchand, R. T., & Wood, R. (2024). Stratocumulus Precipitation Properties Over the Southern Ocean Observed From Aircraft During the SOCRATES Campaign. Journal of Geophysical Research: Atmospheres, 129(6), e2023JD039831. https://doi.org/10.1029/2023JD039831
Ferracci, V., Weber, J., Bolas, C. G., Robinson, A. D., Tummon, F., Rodríguez-Ros, P., Cortés-Greus, P., Baccarini, A., Jones, R. L., Galí, M., Simó, R., Schmale, J., & Harris, Neil. R. P. (2024). Atmospheric isoprene measurements reveal larger-than-expected Southern Ocean emissions. Nature Communications, 15(1), 2571. https://doi.org/10.1038/s41467-024-46744-4
Alinejadtabrizi, T., Lang, F., Huang, Y., Ackermann, L., Keywood, M., Ayers, G., Krummel, P., Humphries, R., Williams, A. G., Siems, S. T., & Manton, M. (2024). Wet deposition in shallow convection over the Southern Ocean. Npj Climate and Atmospheric Science, 7(1), 76. https://doi.org/10.1038/s41612-024-00625-1
Câmara, P. E. A. S., Stech, M., Convey, P., Šantl-Temkiv, T., Pinto, O. H. B., Bones, F. L. V., Lopes, F. A. C., Costa Rodrigues, L. A. D., Carvalho-Silva, M., & Rosa, L. H. (2024). Assessing aerial biodiversity over Keller Peninsula, King George Island, Maritime Antarctica, using DNA metabarcoding. Antarctic Science, 1–10. https://doi.org/10.1017/S095410202400004X
Bertrand, L., Kay, J. E., Haynes, J., & De Boer, G. (2024). A global gridded dataset for cloud vertical structure from combined CloudSat and CALIPSO observations. Earth System Science Data, 16(3), 1301–1316. https://doi.org/10.5194/essd-16-1301-2024
Revell, L. E., Edkins, N. J., Venugopal, A. U., Bhatti, Y. A., Kozyniak, K. M., Davy, P. K., Kuschel, G., Somervell, E., Hardacre, C., & Coulson, G. (2024). Marine aerosol in Aotearoa New Zealand: implications for air quality, climate change and public health. Journal of the Royal Society of New Zealand, 1–23. https://doi.org/10.1080/03036758.2024.2319753
Hofer, J., Seifert, P., Liley, J. B., Radenz, M., Uchino, O., Morino, I., Sakai, T., Nagai, T., & Ansmann, A. (2024). Aerosol-related effects on the occurrence of heterogeneous ice formation over Lauder, New Zealand ∕ Aotearoa. Atmospheric Chemistry and Physics, 24(2), 1265–1280. https://doi.org/10.5194/acp-24-1265-2024
Lapere, R., Thomas, J. L., Favier, V., Angot, H., Asplund, J., Ekman, A. M. L., Marelle, L., Raut, J., Da Silva, A., Wille, J. D., & Zieger, P. (2024). Polar Aerosol Atmospheric Rivers: Detection, Characteristics, and Potential Applications. Journal of Geophysical Research: Atmospheres, 129(2), e2023JD039606. https://doi.org/10.1029/2023JD039606